Nothing Special   »   [go: up one dir, main page]

Skip to main content

Information Retrieval and Text Categorization with Semantic Indexing

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2945))

Abstract

In this paper, we present the effect of the semantic indexing using WordNet senses on the Information Retrieval (IR) and Text Categorization (TC) tasks. The documents have been sense-tagged using a Word Sense Disambiguation (WSD) system based on Specialized Hidden Markov Models (SHMMs). The preliminary results showed that a small improvement of the performance was obtained only in the TC task.

This work was supported by the Spanish Research Projects CICYT TIC2000-0664-C02 and TIC2003-07158-C04-03. We are grateful to E. Ferretti for sense-tagging the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ferretti, E., Lafuente, J., Rosso, P.: Semantics Text Categorization using the K Nearest Neighbours Method. In: Proc. of the 1st Indian International Conference on Artificial Intelligence (2003)

    Google Scholar 

  2. Gonzalo, J., Verdejo, F., Chugur, I., Chigarrán, J.: Indexing with WordNet Synsets can improve Text Retrieval. In: Proc. of the Workshop on Usage of WordNet for NLP (1998)

    Google Scholar 

  3. Jiménez, D., Ferretti, E., Vidal, V., Rosso, P., Enguix, C.F.: The Influence of Semantics in IR using LSI and K-Means Clustering Techniques. In: Proc. of the Workshop on Conceptual Information Retrieval and Clustering of Documents, ACM Int. Conf. on Information and Communication Technologies (2003)

    Google Scholar 

  4. Jiménez, D., Vidal, V., Enguix, C.F.: A Comparison of Experiments with the Bisecting-Spherical K-Means Clustering and SVD Algorithms. In: Proc. of JOTRI (2002)

    Google Scholar 

  5. Molina, A., Pla, F., Segarra, E.: A Hidden Markov Model Approach to Word Sense Disambiguation. In: Proc. of VIII Conf. Iberoamericana de Inteligencia Artificial (IBERAMIA2), Sevilla, Spain (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosso, P., Molina, A., Pla, F., Jiménez, D., Vidal, V. (2004). Information Retrieval and Text Categorization with Semantic Indexing. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science, vol 2945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24630-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24630-5_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21006-1

  • Online ISBN: 978-3-540-24630-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics