Nothing Special   »   [go: up one dir, main page]

Skip to main content

Filtering Very Similar Text Documents: A Case Study

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2945))

Abstract

This paper describes problems with classification and filtration of similar relevant and irrelevant real medical documents from one very specific domain, obtained from the Internet resources. Besides the similarity, the documents are often unbalanced—a lack of irrelevant documents for the training. A definition of similarity is suggested. For the classification, six algorithms are tested from the document similarity point of view. The best results are provided by the back propagation-based neural network and by the radial basis function-based support vector machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.ai.mit.edu/~jrennie/20Newsgroups/

  2. http://www.csie.ntu.edu.tw/~cjlin/bsvm/

  3. http://www.fi.muni.cz/~zizka/medocs/

  4. Alexandrov, M., Gelbukh, A., Lozovoi, G.: Chi-square Classifier for Document Categorization. In: Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, pp. 455–457. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Gelbukh, A., Sidorov, G., Guzmán-Arenas, A.: Use of a weighted topic hierarchy for text retrieval and classification. In: Matoušek, V., Mautner, P., Ocelíková, J., Sojka, P. (eds.) TSD 1999. LNCS (LNAI), vol. 1692, pp. 130–135. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  7. Porter, M.F.: An Algorithm For Suffix Stripping. Program 14(3), 130–137 (1980)

    Google Scholar 

  8. Quinlan, J.R.: Bagging, Boosting, and C4.5. In: Proc. of the 8th Annual Conference on Innovative Applications of Artificial Intelligence, AAAI 1996, Portland, Oregon, August 4-8, pp. 725–730 (1996)

    Google Scholar 

  9. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  10. Tong, S., Koller, D.: Support Vector Machine Active Learning with Applications to Text Classification. Journal of Machine Learning Research 2, 45–66 (2001)

    Article  Google Scholar 

  11. Van Rijsbergen, C.J.: Information Retrieval, 2nd edn., Department of Computer Science, University of Glasgow (1979)

    Google Scholar 

  12. Žižka, J., Bourek, A., Frey, L.: TEA: A Text Analysis Tool for the Intelligent Text Document Filtering. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2000. LNCS (LNAI), vol. 1902, pp. 151–156. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Žižka, J., Bourek, A.: Automated Selection of Interesting Medical Text Documents by the TEA Text Analyzer. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 402–404. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hroza, J., Žižka, J., Bourek, A. (2004). Filtering Very Similar Text Documents: A Case Study. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science, vol 2945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24630-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24630-5_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21006-1

  • Online ISBN: 978-3-540-24630-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics