Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cluster Analysis of Multiparametric MR Imaging including ADC Maps and Relaxometry for Spatially High-Resolved Differentiation of Healthy and Ischemic Human Brain Tissue

  • Chapter
Angewandte Mathematik, insbesondere Informatik

Abstract

In experimental stroke models and ischemic human brain tissue the apparent diffusion coefficient (ADC) decreases in the acute phase, may normalize after reperfusion or may increase in the chronic stage, suggesting that the ADC may be used to monitor the physiologic state of affected tissue. However, a spatially high-resolved determination of the ADC for human brain tissue, required for the transfer of experimental results, is a complex task: (a) ischemic regions in human brain are often small, heterogeneous or irregularly shaped; (b) examination conditions and the complex human brain anatomy lead to widely scattered ADC values. To improve characterization of healthy and pathologic tissues, navigated diffusion-weighted images and ADC maps were incorporated in a new approach into a multidimensional parameter set of relaxation times (T1, T2) and T1-/T2-weighted images. Volunteers and patients with different neurologic deficits were examined. A supervised histogram-based analysis enabled the segmentation of healthy and pathologie tissue classes and the determination of their mean values and standard deviations. Healthy brain tissue was segmented by incorporating T1 relaxation in the data set. Acute and chronic ischemic regions were best differentiated by combining T2- or diffusion-weighted images with ADC maps. The results support findings that within the first week the mean ADC of human ischemic regions is reduced before approaching or exceeding normal values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. E. Moseley, Y. Cohen, J. Mintorovitch, L. Chileuitt, H. Shimizu, J. Kucharczyk, M. F. Wendland, P. R. Weinstein, Early Detection of Regional Cerebral Ischemia in Cats: Comparison of Diffusion-weighted and T2-weighted MRI and Spectroscopy. Magn. Reson. Med. 14, 330–346 (1990).

    Article  Google Scholar 

  2. K. Minematsu, L. Li, M. Fisher, C. H. Sotak, M. A. Davis, M. S. Fiandaca, Diffusion-Weighted Magnetic Resonance Imaging: Rapid and Quantitative Detection of Focal Brain Ischemia. Neurology 42, 235–240 (1992).

    Google Scholar 

  3. M. E. Moseley, K. Butts, M. A. Yenari, M. Marks, A. de Crespigny, Clinical Aspects of DWI. NMR Biomed. 8, 387–396 (1995).

    Article  Google Scholar 

  4. K. M. A. Welch, J. Windham, R. A. Knight, V. Nagesh, J. W. Hugg, M. Jacobs, D. Peck, P. Booker, M. O. Dereski, S. R. Levine, A Model to Predict the Histopathology of Human Stroke Using Diffusion and T2-weighted Magnetic Resonance Imaging. Stroke 26, 1983–1989 (1995).

    Article  Google Scholar 

  5. M. P. Marks, A. de Crespigny, D. Lentz, D. R. Enzmann, G. W. Albers, M. E. Moseley, Acute and Chronic Stroke: Navigated Spin-echo Diffusion-weighted MR Imaging. Radiology 199, 403–408 (1996).

    Google Scholar 

  6. S. Warach, M. Moseley, G. A. Sorensen, W. Koroshetz, Time Course of Diffusion Imaging Abnormalities in Human Stroke. Note to the Editor. Stroke 27, 1254–1255 (1996).

    Google Scholar 

  7. K. M. A. Welch, S. R. Levine, M. Chopp, R. A. Knight, L. D’Olhaberriague, M. D. Boska, V. Nagesh, J. P. Windham, D. Peck, Response to: Time Course of Diffusion Imaging Abnormalities in Human Stroke. Note to the Editor. Stroke 27, 1255–1256 (1996).

    Google Scholar 

  8. S. Warach, J. F. Dashe, R. R. Edelman, Clinical Outcome in Ischemic Stroke Predicted by Early Diffusion-Weighted and Perfusion Magnetic Resonance Imaging: A Preliminary Analysis. J. Cereb. Blood Flow Metab. 16, 53–59 (1996).

    Article  Google Scholar 

  9. S. Warach, J. Gaa, B. Siewert, P. Wielopolski, R. R. Edelman, Acute Human Stroke Studied by Whole Brain Echo Planar Diffusion-weighted Magnetic Resonance Imaging. Ann. Neurol. 37, 231–241 (1995).

    Article  Google Scholar 

  10. A. J. de Crespigny, M. P. Marks, D. R. Enzmann, M. E. Moseley, Navigated Diffusion Imaging of Normal and Ischemic Human Brain. Magn. Reson. Med. 33, 720–728 (1995).

    Article  Google Scholar 

  11. K. Butts, A. de Crespigny, J. M. Pauly, M. Moseley, Diffusion-Weighted Interleaved Echo-Planar Imaging with a Pair of Orthogonal Navigator Echoes. Magn. Resort. Med. 35, 763–770 (1996).

    Article  Google Scholar 

  12. T. E. Conturo, R. C. McKinstry, J. A. Aronovitz, J. Neil, Diffusion MRJ: Precision, Accuracy and Flow Effects. NMR Biomed. 8, 307–332 (1995).

    Article  Google Scholar 

  13. J. Röther, A. de Crespigny, H. D’Arcueil, K. Iwai, M. Moseley, Recovery of Apparent Diffusion Coefficient after Ischemia-induced Spreading Depression Relates to Cerebral Perfusion Gradient. Stroke 27, 980–987 (1996).

    Article  Google Scholar 

  14. A. Mancuso, H. Karibe, W. D. Rooney, G. J. Zarow, S. H. Graham, M. W. Weiner, P. R. Weinstein, Correlation of early Reduction in the Apparent Diffusion Coefficient of Water with Blood Flow Reduction During Middle Cerebral Artery Occlusion in Rats. Magn. Reson. Med. 34, 368–377 (1995).

    Article  Google Scholar 

  15. K. Kohno, M. Hoehn-Berlage, G. Mies, T. Back, K. A. Hossmann, Relationship between diffusion-weighted MR-Images, cerebral blood flow, and energy state in experimental brain infarction. Magn. Reson. Imaging 13, 73–80 (1995).

    Article  Google Scholar 

  16. M. Hoehn-Berlage, M. Eis, T. Back, K. Kohno, K. Yamashita, Changes of Relaxation Times (T1, T2) and Apparent Diffusion Coefficient After Permanent Middle Cerebral Artery Occlusion in the Rat: Temporal Evolution, Regional Extent, and Comparison with Histology. Magn. Reson. Med. 34, 824–834 (1995).

    Article  Google Scholar 

  17. M. Hoehn-Berlage, Diffusion-weighted NMR imaging: application to experimental focal cerebral ischemia. NMR Biomed. 8, 345–358 (1995).

    Article  Google Scholar 

  18. K. A. Hossmann, M. Hoehn-Berlage, Diffusion and Perfusion MR Imaging of Cerebral Ischemia. Cerebrovascular and Brain Metabolism Reviews 7, 187–217 (1995).

    Google Scholar 

  19. K. Minematsu, M. Fisher, L. Limin, C. H. Sotak, Diffusion and Perfusion Magnetic Resonance Imaging Studies to Evaluate a Noncompetitive N-Methyl-D-Aspartate Antagonist and Reperfusion in Experimental Stroke in Rats. Stroke 24, 2074–2081 (1993).

    Article  Google Scholar 

  20. E. H. Lo, K. Matsumoto, A. R. Pierce, L. Garrido, D. Luttinger, Pharmacologic reversal of acute changes in diffusion-weighted magnetic resonance imaging in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 14, 597–603 (1994).

    Article  Google Scholar 

  21. M. Hoehn-Berlage, K. A. Hossmann, E. Busch, M. Eis, B. Schmitz, M. L. Gyngell, Inhibition of nonselective cation channels reduces focal ischemic injury of rat brain. J. Cereb. Blood Flow Metab. 17, 534–542 (1997).

    Article  Google Scholar 

  22. E. Busch, K. Krüger, P. R. Allegrini, C. Kerskens, M. L. Gyngell, M. Hoehn-Berlage, K. A. Hossmann, Reperfusion after Thrombembolic Therapy of embolic Stroke in Rat: Magnetic Resonance and Biochemical Imaging. J. Cereb. Blood Flow Metab. 18, 407–418 (1998).

    Article  Google Scholar 

  23. K. Gersonde, L. Felsberg, T. Tolxdorff, D. Ratzel, B. Ströbel, Analysis of Multiple T2 Proton Relaxation Processes in Human Head and Imaging on the Basis of Selective and Assigned T2 Values. Magn. Reson. Med. 1, 463–477 (1984).

    Article  Google Scholar 

  24. M. Eis, H. Handels, K. Bohndorf, M. Drobnitzky, T. Tolxdorff, A. Stargardt, A New Method for Combined T1-Measurement and Multi-Exponential T2-Analysis in Tissue Characterizing MRI, in “Proc., SMRM, 8th Annual Meeting, 1989,” p. 770.

    Google Scholar 

  25. T. Tolxdorff, H. Handels, K. Bohndorf, Advantages of Multi-Exponential T2-Analysis, in “Tissue Characterizing in MR-Imaging” (H. P. Higer, G. Bielke, Eds.), pp 75–80, Springer, Berlin, 1990.

    Google Scholar 

  26. L. M. Fletcher, J. B. Barsotti, J. P. Hornak, A Multispectral Analysis of Brain Tissues. Magn. Reson. Med. 29, 623–630 (1993).

    Article  Google Scholar 

  27. B. Alfano, A. Brunetti, E. M. Covelli, M. Quarantelli, M. R. Panico, A. Ciarmiello, M. Salvatore, Unsupervised, Automated Segmentation of the Normal Brain Using a Multispectral Relaxometric Magnetic Resonance Approach. Magn. Reson. Med. 37, 84–93 (1997).

    Article  Google Scholar 

  28. M. Eis, H. Handels, M. Hoehn-Berlage, L. J. Wilmes, R.-I. Ernestus, O. Kloiber, T. Tolxdorff, K.-A. Hossmann, Fully Automatic Tissue Characterization in Rat Brain at 4.7 Tesla, in “Proc., SMRM, 10th Annual Scientific Meeting, 1991,” p. 1214.

    Google Scholar 

  29. M. Hoehn-Berlage, T. Tolxdorff, K. Bockhorst, Y. Okada, R.-L Ernestus, In Vivo NMR T2 Relaxation of Experimental Brain Tumors in the Cat: A Multiparameter Tissue Characterization. Magn. Reson. Imaing. 10, 935–947 (1992).

    Article  Google Scholar 

  30. A. W. Anderson, J. C. Gore, Analysis and Correction of Motion Artifacts in Diffusion Weighted Imaging. Magn. Reson. Med. 32, 379–387 (1994).

    Article  Google Scholar 

  31. H. Handels, T. Tolxdorff, A New Segmentation Algorithm for Knowledge Acquisition in Tissue-Characterizing Magnetic Resonance Imaging. J. Digital Imaging 3, 89–94 (1990).

    Article  Google Scholar 

  32. E. O. Stejskal, J. E. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-dependent Field Gradient. J. Chem. Physics 42, 288–292 (1965).

    Article  Google Scholar 

  33. D. LeBihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, M. Laval-Jeantet, MR Imaging of Intravoxel Incoherent Motions: Application to Diffusion and Perfusion in Neurologic Disorders. Radiology 161, 401–407 (1986).

    Google Scholar 

  34. K. Gersonde, T. Tolxdorff, L. Felsberg, Identification and Characterization of Tissues by T2-Selective Whole Body Proton NMR-Imaging. Magn. Reson. Med. 2, 390–401 (1985).

    Article  Google Scholar 

  35. H. Handels, T. Tolxdorff, K. Bohndorf, Preprocessing of Magnetization Decays to Improve Multiexponential T2-Analysis, in “Tissue Characterization in MR Imaging” (H. P. Higer, G. Bielke Eds.), 69–74, Springer, Berlin, 1990.

    Google Scholar 

  36. M. Eis, M. Hoehn-Berlage, A Time-efficient Method for Combined T1-and T2-Measurement in Magnetic Resonance Imaging: Evaluation for Multiparameter Tissue Characterization. MAGMA 2, 79–89 (1994).

    Article  Google Scholar 

  37. T. E. Conturo, A. H. Beth, R. F. Ahrensdorf, R. Price, Simplified Mathematical Description of Longitudinal Recovery in Multiple-Echo Sequences, Magn. Reson. Med. 4, 282–288 (1990).

    Article  Google Scholar 

  38. J. Bernarding, J. Braun, J. Hohmann, R. Kurth, K.-J. Wolf, T. Tolxdorff, Time course of the diffusion coefficient and relaxation times in human cerebral infarcts. MAGMA, 5 (Suppl.), 69 (1997).

    Google Scholar 

  39. R. J. Ordidge, J. A. Helpern, Z. X. Qing, R. A. Knight, V. Nagesh, Correction of Motional Artifacts in Diffusion-Weighted MR Images Using Navigator Echoes. Magn. Reson. Imaging 12, 455–460 (1994).

    Article  Google Scholar 

  40. D. Chien, R. B. Buxton, K. K. Kwong, T. J. Brady, B. R. Rosen, MR Diffusion Imaging of the Human Brain. J. Comput. Assist. Tomogr. 14, 514–520 (1990).

    Article  Google Scholar 

  41. D. LeBihan, J. Delannoy, R. Levin, J. Pekar, O. Le Dour, Temperature Dependence of Water Molecular Diffusion in Brain Tissue, in “Proc. SMRM, 8th Annual Meeting, Amsterdam, 1989,” p. 141.

    Google Scholar 

  42. H. Nabatame, N. Fujimoto, K. Nakamura, Y. Imura, Y. Dodo, H. Fukuyama, J. Kimura, High Intensity Areas on Noncontrast T1-weighted MR Images in Cerebral Infarction. J. Comput. Assist. Tomogr. 14, 521–526 (1990).

    Article  Google Scholar 

  43. W. G. Bradley, Hemorrhage and Brain Iron, in “Magnetic Resonance Imaging”, (D. D. Stark, W. G. Bradley, Eds.), pp 721–768, Mosby Year Book Inc., St. Louis, 1992.

    Google Scholar 

  44. A. van der Toorn, E. Sykova, R. M. Dijkhuizen, I. Vorisek, L. Vargova, E. Skobisova, M. van Lookeren Champagne, T. Reese, K. Nicolay, Dynamic changes in Water ADC, Energy Metabolism, Extracellular Space Volume, and Tortuosity in Neonatal Rat Brain during Global Ischemia. Magn. Reson. Med. 36, 52–60 (1996).

    Article  Google Scholar 

  45. J. Mintorovitch, M. E. Moseley, L. Chileuitt, H. Shimizu, Y. Cohen, P. R. Weinstein, Comparison of Diffusion-and T2-Weighted MRI for the Early Detection of Cerebral Ischemia and Reperfusion in Rats. Magn. Reson. Med. 18, 39–50 (1991).

    Article  Google Scholar 

  46. K.-A. Hossmann, M. Fischer, K. Bockhorst, M. Hoehn-Berlage, NMR imaging of the apparent diffusion coefficient (ADC) for the evaluation of metabolic suppression and recovery after prolonged cerebral ischemia. J. Cereb. Blood Flow Metab 14, 723–731 (1994).

    Article  Google Scholar 

  47. A. L. Busza, K. L. Allen, M. D. King, N. van Bruggen, S. R. Williams, D. G. Gadian, Diffusion-weighted imaging studies of cerebral ischemia in gerbils: potential relevance to energy failure. Stroke 23, 1602–1612 (1992).

    Article  Google Scholar 

  48. S. A. Wharton, Generalized Histogram Clustering Scheme for Multidimensional Image Data. Pattern Recognition 16, 193–199 (1983).

    Article  Google Scholar 

  49. D. LeBihan, R. Turner, P. Douek, N. Patronas, Diffusion MR Imaging: Clinical Applications, Am. J. Radiol 159, 591–599 (1992).

    Google Scholar 

  50. J. V. Hajnal, M. Doran, A. S. Hall, A. G. Collins, A. Oatridge, J. M. Pennock, I. R. Young, G. M. Bydder, MR Imaging of Anisotopically Restricted Diffusion of Water in the Nervous System: Technical, Anatomic, and Pathologic Considerations. J. Comput. Assist. Tomogr. 15, 1–18 (1991).

    Article  Google Scholar 

  51. D. Chien, K. Kwong, D. R. Gress, F. S. Buonanno, R. B. Buxton, B. R. Rosen, MR Diffusion Imaging of Cerebral Infarction in Humans. Am. J. Neuroradiology 13, 1097–1102 (1992).

    Google Scholar 

  52. C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett, Quantitative diffusion tensor imaging of the human brain, in “Proc., ESMRMB, 13th Annual Meeting, 1996,” p. 70.

    Google Scholar 

  53. P. A. Bottomley, T. H. Foster, E. A. Raymond, L. M. Pfeifer, A Review of Normal Tissue Hydrogen NMR Relaxation Times and Relaxation Mechanisms from 1–100 MHz: Dependence on Tissue Types, NMR Frequency, Temperature, Species, Excision, and Age. Medical Physics, 11, 425 (1984).

    Article  Google Scholar 

  54. F. W. Wehrli, Principles of Magnetic Resonance, in “Magnetic Resonance Imaging,” (D. D. Stark, W. G. Bradley, Eds.), pp. 3–20, 2nd Edition, Mosby Year Book, St. Louis, 1992.

    Google Scholar 

  55. T. Back, M. Hoehn-Berlage, K. Kohno, K.-A. Hossmann, Diffusion Nuclear Magnetic Resonance Imaging in Experimental Stroke. Stroke 25, 494–500 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patrick Horster

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Bernarding, J. et al. (1999). Cluster Analysis of Multiparametric MR Imaging including ADC Maps and Relaxometry for Spatially High-Resolved Differentiation of Healthy and Ischemic Human Brain Tissue. In: Horster, P. (eds) Angewandte Mathematik, insbesondere Informatik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-83092-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-83092-0_3

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-05720-6

  • Online ISBN: 978-3-322-83092-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics