Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Dynamic Global Differential Grouping for Large-Scale Black-Box Optimization

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10941))

Included in the following conference series:

Abstract

Cooperative Co-evolution (CC) framework is an important method to tackle Large Scale Black-Box Optimization (LSBO) problem. One of the main step in CC is grouping for the decision variables, which affects the optimization performance. An ideal grouping result is that the relationship of decision variables in intra-group is stronger as possible and those in inter-groups is weaker as possible. Global Differential Grouping (GDG) is an efficient grouping method based on the idea of partial derivatives of multivariate functions, and it can automatically resolve the problem by maintaining the global information among variables. However, once the grouping result by GDG is determined, it will no longer be updated and will not be automatically adjusted with the evolution of the algorithm, which may affect the optimization performance of the algorithm. Therefore, based on GDG, a Dynamic Global Differential Grouping (DGDG) strategy is proposed for grouping the decision variables in this paper, which can update the grouping results with the evolution processing. DGDG works with Particle Swarm Optimization (PSO) algorithm in this paper, which is termed as CC-DGDG-PSO. The experimental results based on the LSBO benchmark functions from CEC’2010 show that DGDG algorithm can improve the performance of GDG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global continues optimization: a survey. Inf. Sci. 295, 407–428 (2015)

    Article  MathSciNet  Google Scholar 

  2. Zhou, Z.-H., Chawla, N.V., Jin, Y., Williams, G.J.: Big data opportunities and challenges: discussions from data analytics perspectives [discussion forum]. IEEE Comput. Intell. Mag. 9(4), 62–74 (2014)

    Article  Google Scholar 

  3. Scheerlinck, K., Vernieuwe, H., Baets, B.D.: Zadeh’s extension principle for continuous functions of non-interactive variables: a parallel optimization approach. IEEE Trans. Fuzzy Syst. 20(1), 96–108 (2012)

    Article  Google Scholar 

  4. Schaul, T.: Studies in continuous black-box optimization. Universität München (2011)

    Google Scholar 

  5. Mei, Y., Omidvar, M.N., Li, X., Yao, X.: A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization. ACM Trans. Math. Softw. 42(2), 13 (2016)

    Article  MathSciNet  Google Scholar 

  6. Mucherino, A., Fuchs, M., Vasseur, X., Gratton, S.: Variable neighborhood search for robust optimization and applications to aerodynamics. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 230–237. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29843-1_26

    Chapter  Google Scholar 

  7. Vanderplaats, G.N.: Very large scale optimization. National Aeronautics and Space Administration, Langley Research Center (2002)

    Google Scholar 

  8. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  9. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  10. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  11. Yang, Z., Tang, K., Yao, X.: Differential evolution for high-dimensional function optimization. In: IEEE Congress on Evolutionary Computation, pp. 3523–3530. IEEE (2007)

    Google Scholar 

  12. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  13. Omidvar, M.N., Li, X., Yang, Z., Yao, X.: Cooperative co-evolution for large scale optimization through more frequent random grouping. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  14. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE (2008)

    Google Scholar 

  15. Yang, Z.: Nature inspired real-valued optimization and applications. University of Science and Technology of China (2010)

    Google Scholar 

  16. Ray, T., Yao, X.: A cooperative coevolutionary algorithm with Correlation based Adaptive Variable Partitioning. In: IEEE Congress on Evolutionary Computation, pp. 983–989 (2009)

    Google Scholar 

  17. Singh, H.K., Ray, T.: Divide and conquer in coevolution: a difficult balancing act. In: Sarker, R.A., Ray, T. (eds.) Agent-Based Evolutionary Search. ALO, vol. 5, pp. 117–138. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13425-8_6

    Chapter  Google Scholar 

  18. Omidvar, M.N., Mei, Y., Li, X.: Effective decomposition of large-scale separable continuous functions for cooperative co-evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1305–1312 (2014)

    Google Scholar 

  19. Liu, J., Tang, K.: Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 350–357. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41278-3_43

    Chapter  Google Scholar 

  20. Liu, J.: CMA-ES and decomposition strategy for large scale continuous optimization problem. University of Science and Technology of China (2014)

    Google Scholar 

  21. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–392 (2014)

    Article  Google Scholar 

  22. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the CEC2010 special session and competition on large-scale global optimization (2010)

    Google Scholar 

  23. Omidvar, M.N., Li, X., Tang, K.: Designing benchmark problems for large-scale continuous optimization. Inf. Sci. 316, 419–436 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science foundation of China (Grant Nos. 61673194, 61105128), Key Research and Development Program of Jiangsu Province, China (Grant No. BE2017630), the Postdoctoral Science Foundation of China (Grant No. 2014M560390), Six Talent Peaks Project of Jiangsu Province (Grant No. DZXX-025). National Key R&D Program of China, Project (Grant No. 2017YFC1601800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Zou, Z., Fang, W. (2018). A Dynamic Global Differential Grouping for Large-Scale Black-Box Optimization. In: Tan, Y., Shi, Y., Tang, Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science(), vol 10941. Springer, Cham. https://doi.org/10.1007/978-3-319-93815-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93815-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93814-1

  • Online ISBN: 978-3-319-93815-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics