Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Grassmannian Minimum Enclosing Ball Approach for Common Subspace Extraction

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

  • 1786 Accesses

Abstract

We study the problem of finding a subspace representative of multiple datasets by minimizing the maximal dissimilarity between this subspace and all the subspaces generated by those datasets. After arguing for the choice of the dissimilarity function, we derive some properties of the corresponding formulation. We propose an adaptation of an algorithm used for a similar problem on Riemannian manifolds. Experiments on synthetic data show that the subspace recovered by our algorithm is closer to the true common subspace than the solution obtained using an SVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alter, O., Brown, P.O., Botstein, D.: Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Natl. Acad. Sci. 100(6), 3351–3356 (2003)

    Article  Google Scholar 

  2. Ponnapalli, S.P., Saunders, M.A., Van Loan, C.F., Alter, O.: A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms. PloS one 6(12), e28072 (2011)

    Article  Google Scholar 

  3. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)

    Article  Google Scholar 

  4. Wold, H.: Partial least squares. Encycl. Stat. Sci. 6, 581–591 (1985)

    Google Scholar 

  5. Meng, C., Kuster, B., Culhane, A.C., Gholami, A.M.: A multivariate approach to the integration of multi-omics datasets. BMC Bioinf. 15(1), 162 (2014)

    Article  Google Scholar 

  6. Hanafi, M., Kohler, A., Qannari, E.M.: Connections between multiple co-inertia analysis and consensus principal component analysis. Chemometr. Intell. Lab. Syst. 106(1), 37–40 (2011)

    Article  Google Scholar 

  7. Tenenhaus, A., Tenenhaus, M.: Regularized generalized canonical correlation analysis. Psychometrika 76(2), 257–284 (2011)

    Article  MathSciNet  Google Scholar 

  8. Westerhuis, J.A., Kourti, T., MacGregor, J.F.: Analysis of multiblock and hierarchical PCA and PLS models. J. Chemometr. 12(5), 301–321 (1998)

    Article  Google Scholar 

  9. Badoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 801–802 (2003)

    Google Scholar 

  10. Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center. Comput. Geom. 46(1), 93–104 (2013)

    Article  MathSciNet  Google Scholar 

  11. Angulo, J.: Structure tensor image filtering using Riemannian \(L_1\) and \(L_\infty \) center-of-mass. Image Anal. Stereol. 33(2), 95–105 (2014)

    Article  MathSciNet  Google Scholar 

  12. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  Google Scholar 

  13. Ye, K., Lim, L.H.: Schubert varieties and distances between subspaces of different dimensions. SIAM J. Matrix Anal. Appl. 37(3), 1176–1197 (2016)

    Article  MathSciNet  Google Scholar 

  14. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  15. Gallivan, K.A., Srivastava, A., Liu, X., Van Dooren, P.: Efficient algorithms for inferences on grassmann manifolds. In: IEEE Workshop on Statistical Signal Processing, pp. 315–318 (2003)

    Google Scholar 

Download references

Acknowledgments

Part of this work was performed while the second author was a visiting professor at Université catholique de Louvain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Renard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Renard, E., Gallivan, K.A., Absil, PA. (2018). A Grassmannian Minimum Enclosing Ball Approach for Common Subspace Extraction. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics