Nothing Special   »   [go: up one dir, main page]

Skip to main content

Glitch Recall: A Hardware Trojan Exploiting Natural Glitches in Logic Circuits

  • Conference paper
  • First Online:
Information Security Applications (WISA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10763))

Included in the following conference series:

  • 1108 Accesses

Abstract

As the IoT era comes to the full-fledged, hardware Trojans that involve malicious modifications of circuitry are becoming a growing security concern. To avoid a detection mechanism, hardware Trojans may need a stealthy nature in their existence for being dormant, and even when triggered. In this paper, we devise a new hardware Trojan concept that exploits natural glitches and their control mechanisms for information leakage in a stealthy manner. We indeed reversely exploit the glitch control mechanisms to be bypassed when triggered, and try to recall the natural glitches for the purpose. An adversary who triggered the hardware Trojan may infer multiple input values from a single output of the target logic, thereby obtaining multiple outputs of the preceding logics, by monitoring the existence of the natural glitches. We perform experiments and discuss the results and threats, not to be neglected, along with a possible mitigation.

This work was supported by Defense Acquisition Program Administration and Agency for Defense Development under the contract (UD160066BD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., Tehranipoor, M.: Hardware Trojans: lessons learned after one decade of research. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22(1), 6:1–6:23 (2016)

    Google Scholar 

  2. Tehranipoor, M., Koushanfar, F.: A survey of hardware Trojan taxonomy and detection. IEEE Des. Test Comput. 27(1), 10–25 (2010)

    Article  Google Scholar 

  3. Alkabani, Y., Koushanfar, F.: Designer’s hardware Trojan horse. In: IEEE International Workshop on Hardware-Oriented Security and Trust (HOST) (2008)

    Google Scholar 

  4. Bhunia, S., Hsiao, M.S., Banga, M., Narasimhan, S.: Hardware Trojan attacks: threat analysis and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)

    Article  Google Scholar 

  5. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and emerging solutions. In: IEEE International High Level Design Validation and Test Workshop (HLDVT) (2009)

    Google Scholar 

  6. Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An on-chip glitchy-clock generator for testing fault injection attacks. J. Cryptogr. Eng. 1, 265–270 (2011)

    Article  Google Scholar 

  7. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When clocks fail: on critical paths and clock faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12510-2_13

    Chapter  Google Scholar 

  8. Fukunaga, T., Takahashi, J.: Practical fault attack on a cryptographic LSI with ISO/IEC 18033–3 block ciphers. In: Fault Diagnosis and Tolerance in Cryptography (FDTC) (2009)

    Google Scholar 

  9. Plants, W.C., Mazumder, N., Kundu, A., Joseph, J., Wong, W.W.: Delay locked loop for an FPGA architecture. Google Patents, U.S. Patent No. 7484113 (2009)

    Google Scholar 

  10. Czajkowski, T.S., Brown, S.D.: Using negative edge triggered FFs to reduce glitching power in FPGA circuits. In: 44th ACM/IEEE Design Automation Conference (DAC) (2007)

    Google Scholar 

  11. Lim, H., Lee, K., Cho, Y., Chang, N.: Flip-flop insertion with shifted-phase clocks for FPGA power reductio. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 335–342 (2005)

    Google Scholar 

  12. Hsieh, C.T., Cong, J., Zhang, Z., Chang, S.C.: Behavioral synthesis with activating unused flip-flops for reducing glitch power in FPGA. In: Proceedings of the 2008 Asia and South Pacific Design Automation Conference, pp. 10–15 (2008)

    Google Scholar 

  13. Vijayakumar, A., Kundu, S.: Glitch power reduction via clock skew scheduling. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2014)

    Google Scholar 

  14. Lamoureux, J., Lemieux, G.G.F., Wilton, S.J.E.: GlitchLess: dynamic power minimization in FPGAs through edge alignment and glitch filtering. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(11), 1521–1534 (2008)

    Article  Google Scholar 

  15. Dong, X., Lemieux, G.G.F.: PGR: period and glitch reduction via clock skew scheduling, delay padding and GlitchLess. In: International Conference on Field-Programmable Technology (FPT) (2009)

    Google Scholar 

  16. Hashimoto, M., Onodera, H., Tamaru, K.: A practical gate resizing technique considering glitch reduction for low power design. In: Proceedings of the 36th Annual ACM/IEEE Design Automation Conference (1999)

    Google Scholar 

  17. Valachi, A., Aignătoaiei, B.I., Timiş, M.G.: The comparative study of two analytical methods for detection and elimination of the static hazard in combinational logic circuits. In: 15th International Conference on System Theory, Control, and Computing (ICSTCC) (2011)

    Google Scholar 

  18. Givone, D.D.: Digital Principles and Design. McGraw-Hill, New York (2003)

    Google Scholar 

  19. Shah, K.: An innovative approach to detect glitches in hardware implementations on FPGAs. Master of Science thesis (2013)

    Google Scholar 

  20. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF using programmable delay lines. In: IEEE International Workshop on Information Forensics and Security (WIFS) (2010)

    Google Scholar 

  21. Banga, M., Hsiao, M.S.: A region based approach for the identification of hardware Trojans. In: IEEE International Workshop on Hardware-Oriented Security and Trust (HOST) (2008)

    Google Scholar 

  22. Wang, X., Tehranipoor, M., Plusquellic, J.: Detecting malicious inclusions in secure hardware: challenges and solutions. In: IEEE International Workshop on Hardware-Oriented Security and Trust (HOST) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyoung Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joh, J., Seo, Y., Kim, HK., Kwon, T. (2018). Glitch Recall: A Hardware Trojan Exploiting Natural Glitches in Logic Circuits. In: Kang, B., Kim, T. (eds) Information Security Applications. WISA 2017. Lecture Notes in Computer Science(), vol 10763. Springer, Cham. https://doi.org/10.1007/978-3-319-93563-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93563-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93562-1

  • Online ISBN: 978-3-319-93563-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics