Abstract
Deep Kernel Learning (DKL) has been proven to be an effective method to learn complex feature representation by combining the structural properties of deep learning with the nonparametric flexibility of kernel methods, which can be naturally used for supervised dimensionality reduction. However, if limited training data are available its performance could be compromised because parameters of the deep structure embedded into the model are large and difficult to be efficiently optimized. In order to address this issue, we propose the Shared Deep Kernel Learning model by combining DKL with shared Gaussian Process Latent Variable Model. The novel method could not only bring the improved performance without increasing model complexity but also learn the hierarchical features by sharing the deep kernel. The comparison with some supervised dimensionality reduction methods and deep learning approach verify the advantages of the proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bilmes, J.A., Malkin, J., Li, X., Harada, S., Kilanski, K., Kirchhoff, K., Wright, R.: The vocal joystick. In: IEEE Conference on Acoustics, Speech and Signal Processing (2006)
Damianou, A.C., Lawrence, N.D.: Deep Gaussian processes. In: Artificial Intelligence and Statistics (AISTATS) (2013)
Ek, C.H.: Shared Gaussian process latent variables models. Ph.D. thesis, Oxford Brookes University (2009)
Eleftheriadis, S., Rudovic, O., Pantic, M.: Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition. IEEE Trans. Image Process. 24(1), 189–204 (2015)
Gao, J., Zhang, J., Tien, D.: Relevance units latent variable model and nonlinear dimensionality reduction. IEEE Trans. Neural Netw. 21, 123–135 (2010)
Gao, X., Wang, X., Tao, D., Li, X.: Supervised Gaussian process latent variable model for dimensionality reduction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(99), 425–434 (2011)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Jiang, X., Fang, X., Chen, Z., Gao, J., Jiang, J., Cai, Z.: Supervised Gaussian process latent variable model for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14(10), 1760–1764 (2017)
Jiang, X., Gao, J., Wang, T., Shi, D.: TPSLVM: a dimensionality reduction algorithm based on thin plate splines. IEEE Trans. Cybern. 44(10), 1795–1807 (2014)
Jiang, X., Gao, J., Wang, T., Zheng, L.: Supervised latent linear Gaussian process latent variable model for dimensionality reduction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(6), 1620–1632 (2012)
Kouropteva, O., Okun, O., Pietikäinen, M.: Supervised locally linear embedding algorithm for pattern recognition. Pattern Recogn. Image Anal. 2652, 386–394 (2003)
Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)
Li, J., Zhang, B., Zhang, D.: Shared autoencoder Gaussian process latent variable model for visual classificatio. IEEE Trans. Neural Netw. Learn. Syst. (2017, in Press)
Li, X., Shu, L.: Kernel based nonlinear dimensionality reduction for microarray gene expression data analysis. Expert Syst. Appl. 36, 7644–7650 (2009)
Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. Technical report, Tilburg University (2008)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)
Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, Boca Raton (2005)
Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)
Snoek, J., Adams, R.P., Larochelle, H.: Nonparametric guidance of autoencoder representations using label information. J. Mach. Learn. Res. 13, 2567–2588 (2012)
Urtasun, R., Darrell, T.: Discriminative Gaussian process latent variable model for classification. In: International Conference on Machine learning (ICML), pp. 927–934. ACM (2007)
Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), pp. 496–503 (2014)
Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: The 19th International Conference on Artificial Intelligence and Statistics (AISTATS) (2016)
Wilson, A.G., Nickisch, H.: Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In: International Conference on Machine Learning (2015)
Yang, J., Jin, Z., Yang, J.Y., Zhang, D., Frangi, A.F.: Essence of kernel fisher discriminant: KPCA plus LDA. Pattern Recogn. 37, 2097–2100 (2004)
Yu, S., Yu, K., Tresp, V., Kriegel, H.P., Wu, M.: Supervised probabilistic principal component analysis. In: International Conference on Knowledge Discovery and Data Mining (KDD), pp. 464–473. ACM Press (2006)
Acknowledgments
This work is supported by the National Natural Science Foundation of China under Grants 61402424, 61603355, 61773355, the National Science and Technology Major Project under Grant 2016ZX05014003-003, and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Jiang, X., Gao, J., Liu, X., Cai, Z., Zhang, D., Liu, Y. (2018). Shared Deep Kernel Learning for Dimensionality Reduction. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-93040-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93039-8
Online ISBN: 978-3-319-93040-4
eBook Packages: Computer ScienceComputer Science (R0)