Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Ensemble Classifiers and Peer Effects Analysis for Churn Forecasting in Retail Banking

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Included in the following conference series:

Abstract

Modern customer analytics offers retailers a variety of unprecedented opportunities to enhance customer intelligence solutions by tracking individual clients and their peers and studying clientele behavioral patterns. While telecommunication providers have been actively utilizing peer network data to improve their customer analytics for a number of years, there yet exists a very limited knowledge on the peer effects in retail banking. We introduce modern deep learning concepts to quantify the impact of social network variables on bank customer attrition. Furthermore, we propose a novel deep ensemble classifier that systematically integrates predictive capabilities of individual classifiers in a meta-level model, by efficiently stacking multiple predictions using convolutional neural networks. We evaluate our methodology in application to customer retention in a retail financial institution in Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Backiel, A., Baesens, B., Claeskens, G.: Mining telecommunication networks to enhance customer lifetime predictions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 15–26. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_2

    Chapter  Google Scholar 

  2. Backiel, A., Baesens, B., Claeskens, G.: Predicting time-to-churn of prepaid mobile telephone customers using social network analysis. J. Oper. Res. Soc. 67(9), 1135–1145 (2016)

    Article  Google Scholar 

  3. Benoit, D.F., Van den Poel, D.: Improving customer retention in financial services using kinship network information. Expert Syst. Appl. 39(13), 11435–11442 (2012)

    Article  Google Scholar 

  4. Castanedo, F., Valverde, G., Zaratiegui, J., Vazquez, A.: Using deep learning to predict customer churn in a mobile telecommunication network (2014)

    Google Scholar 

  5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  6. Clarke, B.: Comparing Bayes model averaging and stacking when model approximation error cannot be ignored. J. Mach. Learn. Res. 4, 683–712 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Compensation Force: 2016 turnover rates by industry (2017)

    Google Scholar 

  8. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Džeroski, S., Ženko, B.: Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 54(3), 255–273 (2004)

    Article  Google Scholar 

  10. Ernst & Young: The customer takes control. Consumer Banking Survey (2012)

    Google Scholar 

  11. Gallo, A.: The value of keeping the right customers. Harv. Bus. Rev. 5, 2–6 (2014)

    Google Scholar 

  12. Han, S.H., Lu, S.X., Leung, S.C.: Segmentation of telecom customers based on customer value by decision tree model. Expert Syst. Appl. 39(4), 3964–3973 (2012)

    Article  Google Scholar 

  13. Hill, S., Provost, F., Volinsky, C.: Network-based marketing: identifying likely adopters via consumer networks. Stat. Sci. 21(2), 256–276 (2006)

    Article  MathSciNet  Google Scholar 

  14. HSBC: HSBC launches global ‘social network’ for business customers (2017)

    Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  16. Larivière, B., Van den Poel, D.: Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Syst. Appl. 29(2), 472–484 (2005)

    Article  Google Scholar 

  17. Li, D.C., Dai, W.L., Tseng, W.T.: A two-stage clustering method to analyze customer characteristics to build discriminative customer management: a case of textile manufacturing business. Expert Syst. Appl. 38(6), 7186–7191 (2011)

    Article  Google Scholar 

  18. Macintosh, G., Lockshin, L.S.: Retail relationships and store loyalty: a multi-level perspective. Int. J. Res. Mark. 14(5), 487–497 (1997)

    Article  Google Scholar 

  19. Mao, H., Jin, X., Zhu, L.: Methods of measuring influence of bank customer using social network model. Am. J. Ind. Bus. Manag. 5(4), 155 (2015)

    Google Scholar 

  20. Miguéis, V.L., Van den Poel, D., Camanho, A.S., e Cunha, J.F.: Modeling partial customer churn: on the value of first product-category purchase sequences. Expert Syst. Appl. 39(12), 11250–11256 (2012)

    Article  Google Scholar 

  21. Mozer, M.C., Wolniewicz, R., Grimes, D.B., Johnson, E., Kaushansky, H.: Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. IEEE Trans. Neural Netw. 11(3), 690–696 (2000)

    Article  Google Scholar 

  22. NG Data: Predicting and preventing customer churn by unlocking big data (2013)

    Google Scholar 

  23. Ngai, E.W., Xiu, L., Chau, D.C.: Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst. Appl. 36(2), 2592–2602 (2009)

    Article  Google Scholar 

  24. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  25. Spanoudes, P., Nguyen, T.: Deep learning in customer churn prediction: unsupervised feature learning on abstract company independent feature vectors. arXiv:1703.03869 (2017)

  26. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of CVPR, pp. 1–9. IEEE (2015)

    Google Scholar 

  28. Verbeke, W., Martens, D., Baesens, B.: Social network analysis for customer churn prediction. Appl. Soft Comput. 14, 431–446 (2014)

    Article  Google Scholar 

  29. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2016)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by NSF IIS 1633331 & 1633355, NSF DMS 1736368, and Simons Foundation. The work of V. Lyubchich was supported by Mitacs Accelerate Internship Awards with contributions from Temenos Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia R. Gel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Gel, Y.R., Lyubchich, V., Winship, T. (2018). Deep Ensemble Classifiers and Peer Effects Analysis for Churn Forecasting in Retail Banking. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics