Abstract
The identification of nerve structures is a crucial issue in the field of anesthesiology. Recently, ultrasound images have become relevant for performing Peripheral Nerve Blocking (PNB) procedures since it offers a non-invasive visualization of the nerve and the anatomical structures around it. However, the location of nerve structures from ultrasound images is a difficult task for the specialist due to the artifacts, i.e., speckle noise, which affect the intelligibility of a given image. Here, we proposed an automatic nerve structure segmentation approach from ultrasound images based on random under-sampling (RUS) and a support vector machine (SVM) classifier. In particular, we use a Graph Cuts-based technique to define a region of interest (ROI). Then, such an ROI is split into several correlated areas (superpixels) using the well-known Simple Linear Iterative Clustering algorithm. Further, a nonlinear Wavelet transform is applied to extract relevant features. Afterward, we use a classification scheme based on RUS and SVM to predict the label of each parametrized superpixel. Thus, our approach can deal with the imbalance issues when classifying a superpixel as nerve or non-nerve. Attained results on a real-world dataset demonstrate that our method outperforms similar works regarding both the dice segmentation coefficient and the geometric mean-based classification assessment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
González, J.G., Álvarez, M.A., Orozco, Á.A.: Peripheral nerves segmentation in ultrasound images using non-linear wavelets and Gaussian processes. In: Paredes, R., Cardoso, J.S., Pardo, X.M. (eds.) IbPRIA 2015. LNCS, vol. 9117, pp. 603–611. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19390-8_68
González, J.G., Álvarez, M.A., Orozco, Á.A.: Automatic segmentation of nerve structures in ultrasound images using graph cuts and Gaussian processes. In: 37th Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 3089–3092. IEEE (2015)
Gil-González, J., Álvarez-Meza, A., Echeverry-Correa, J., Orozco-Gutiérrez, A., Álvarez-López, M.: Enhancement of nerve structure segmentation by a correntropy-based pre-image approach. Tecno Lógicas 20(39), 199–210 (2017)
González, J.G., Álvarez, M.A., Orozco, Á.A.: A probabilistic framework based on SLIC-superpixel and Gaussian processes for segmenting nerves in ultrasound images. In: IEEE 38th Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 4133–4136. IEEE (2016)
Shao, Y.H., Chen, W.J., Zhang, J.J., Wang, Z., Deng, N.Y.: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification. Pattern Recognit. 47(9), 3158–3167 (2014)
Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. (CSUR) 49(2), 31 (2016)
Han, C.Y.: Improved SLIC imagine segmentation algorithm based on k-means. Clust. Comput. 20(2), 1017–1023 (2017)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)
Chang, C.Y., Lei, Y.F., Tseng, C.H., Shih, S.R.: Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 57(6), 1348–1357 (2010)
Acknowledgments
Under grants provided by COLCIENCIAS project 1110-744-55958: “Desarrollo de un sistema de identificación de estructuras nerviosas en imágenes de ultrasonido para la asistencia de bloqueo de nervios periféricos”. C. Jimenez is partially funded by the project E6-18-09: “Clasificador de máquinas de vectores de soporte para problemas desbalanceados con selección automática de parámetros” (Vicerrectoria de Investigaciones, Innovación y Extensión) and by Maestría en Ingeniería Eléctrica, both from Universidad Tecnológica de Pereira.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Jimenez, C., Diaz, D., Salazar, D., Alvarez, A.M., Orozco, A., Henao, O. (2018). Nerve Structure Segmentation from Ultrasound Images Using Random Under-Sampling and an SVM Classifier. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_65
Download citation
DOI: https://doi.org/10.1007/978-3-319-93000-8_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92999-6
Online ISBN: 978-3-319-93000-8
eBook Packages: Computer ScienceComputer Science (R0)