Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nerve Structure Segmentation from Ultrasound Images Using Random Under-Sampling and an SVM Classifier

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

  • 5167 Accesses

Abstract

The identification of nerve structures is a crucial issue in the field of anesthesiology. Recently, ultrasound images have become relevant for performing Peripheral Nerve Blocking (PNB) procedures since it offers a non-invasive visualization of the nerve and the anatomical structures around it. However, the location of nerve structures from ultrasound images is a difficult task for the specialist due to the artifacts, i.e., speckle noise, which affect the intelligibility of a given image. Here, we proposed an automatic nerve structure segmentation approach from ultrasound images based on random under-sampling (RUS) and a support vector machine (SVM) classifier. In particular, we use a Graph Cuts-based technique to define a region of interest (ROI). Then, such an ROI is split into several correlated areas (superpixels) using the well-known Simple Linear Iterative Clustering algorithm. Further, a nonlinear Wavelet transform is applied to extract relevant features. Afterward, we use a classification scheme based on RUS and SVM to predict the label of each parametrized superpixel. Thus, our approach can deal with the imbalance issues when classifying a superpixel as nerve or non-nerve. Attained results on a real-world dataset demonstrate that our method outperforms similar works regarding both the dice segmentation coefficient and the geometric mean-based classification assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. González, J.G., Álvarez, M.A., Orozco, Á.A.: Peripheral nerves segmentation in ultrasound images using non-linear wavelets and Gaussian processes. In: Paredes, R., Cardoso, J.S., Pardo, X.M. (eds.) IbPRIA 2015. LNCS, vol. 9117, pp. 603–611. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19390-8_68

    Chapter  Google Scholar 

  2. González, J.G., Álvarez, M.A., Orozco, Á.A.: Automatic segmentation of nerve structures in ultrasound images using graph cuts and Gaussian processes. In: 37th Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 3089–3092. IEEE (2015)

    Google Scholar 

  3. Gil-González, J., Álvarez-Meza, A., Echeverry-Correa, J., Orozco-Gutiérrez, A., Álvarez-López, M.: Enhancement of nerve structure segmentation by a correntropy-based pre-image approach. Tecno Lógicas 20(39), 199–210 (2017)

    Google Scholar 

  4. González, J.G., Álvarez, M.A., Orozco, Á.A.: A probabilistic framework based on SLIC-superpixel and Gaussian processes for segmenting nerves in ultrasound images. In: IEEE 38th Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 4133–4136. IEEE (2016)

    Google Scholar 

  5. Shao, Y.H., Chen, W.J., Zhang, J.J., Wang, Z., Deng, N.Y.: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification. Pattern Recognit. 47(9), 3158–3167 (2014)

    Article  Google Scholar 

  6. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. (CSUR) 49(2), 31 (2016)

    Article  Google Scholar 

  7. Han, C.Y.: Improved SLIC imagine segmentation algorithm based on k-means. Clust. Comput. 20(2), 1017–1023 (2017)

    Article  Google Scholar 

  8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)

    MATH  Google Scholar 

  9. Chang, C.Y., Lei, Y.F., Tseng, C.H., Shih, S.R.: Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 57(6), 1348–1357 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Under grants provided by COLCIENCIAS project 1110-744-55958: “Desarrollo de un sistema de identificación de estructuras nerviosas en imágenes de ultrasonido para la asistencia de bloqueo de nervios periféricos”. C. Jimenez is partially funded by the project E6-18-09: “Clasificador de máquinas de vectores de soporte para problemas desbalanceados con selección automática de parámetros” (Vicerrectoria de Investigaciones, Innovación y Extensión) and by Maestría en Ingeniería Eléctrica, both from Universidad Tecnológica de Pereira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jimenez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenez, C., Diaz, D., Salazar, D., Alvarez, A.M., Orozco, A., Henao, O. (2018). Nerve Structure Segmentation from Ultrasound Images Using Random Under-Sampling and an SVM Classifier. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics