Abstract
Collective-adaptive systems offer an interesting notion of interaction where run-time contextual data are the driving force for interaction. The attribute-based interaction has been proposed as a foundational theoretical framework to model CAS interactions. The framework permits a group of partners to interact by considering their run-time properties and their environment. In this paper, we lay the basis for an efficient, correct, and distributed implementation of the attribute-based interaction framework. First, we present three coordination infrastructures for message exchange, then we prove their correctness, and finally we model them in terms of stochastic processes to evaluate their performance.
This research has been supported by the European projects IP 257414 ASCENS and STReP 600708 QUANTICOL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For the sake of brevity, we omit the symmetric rule of Com.
- 2.
Go implementations: https://github.com/giulio-garbi/goat.
- 3.
The simulator: https://bitbucket.org/Lazkany/abcsimulator.
References
Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_1
Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_38
Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming the Interactions of Collective Adaptive Systems by Relying on Attribute-based Communication. ArXiv e-prints, October 2017. http://arxiv.org/abs/1711.06092
Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for attribute-based communication. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC 2015, pp. 1840–1845. ACM (2015). https://doi.org/10.1145/2695664.2695668
Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)
Albert, E., Lanese, I. (eds.): FORTE 2016. LNCS, vol. 9688. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8
Chang, J.M., Maxemchuk, N.F.: Reliable broadcast protocols. ACM Trans. Comput. Syst. 2, 251–273 (1984). https://doi.org/10.1145/989.357400
Cristian, F.: Asynchronous atomic broadcast. IBM Tech. Discl. Bull. 33(9), 115–116 (1991)
Cristian, F., Mishra, S.: The pinwheel asynchronous atomic broadcast protocols. In: Second International Symposium on Autonomous Decentralized Systems, Proceedings, ISADS 1995, pp. 215–221. IEEE (1995). https://doi.org/10.1109/ISADS.1995.398975
De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang at work. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 485–497. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_38
Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput. Surv. 36, 372–421 (2004). https://doi.org/10.1145/1041680.1041682
Ferscha, A.: Collective adaptive systems. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2015 Adjunct, pp. 893–895. ACM, New York (2015). https://doi.org/10.1145/2800835.2809508
Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/3149.214121
Jensen, T.R., Toft, B.: Graph Coloring Problems, vol. 39. Wiley, New York (1995)
Lopes, L., Silva, F., Vasconcelos, V.T.: A virtual machine for a process calculus. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 244–260. Springer, Heidelberg (1999). https://doi.org/10.1007/10704567_15
Prasad, K.V.S.: A calculus of broadcasting systems. In: Abramsky, S., Maibaum, T.S.E. (eds.) CAAP 1991. LNCS, vol. 493, pp. 338–358. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-53982-4_19
Robertson, J.B.: Continuous-time Markov chains (W. J. Anderson). SIAM Rev. 36(2), 316–317 (1994)
Sangiorgi, D., Walker, D.: The PI-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2003)
Schulze, T.P.: Efficient kinetic Monte Carlo simulation. J. Comput. Phys. 227(4), 2455–2462 (2008). http://www.sciencedirect.com/science/article/pii/S0021999107004755
Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-Work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 IFIP International Federation for Information Processing
About this paper
Cite this paper
Alrahman, Y.A., De Nicola, R., Garbi, G., Loreti, M. (2018). A Distributed Coordination Infrastructure for Attribute-Based Interaction. In: Baier, C., Caires, L. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2018. Lecture Notes in Computer Science(), vol 10854. Springer, Cham. https://doi.org/10.1007/978-3-319-92612-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-92612-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92611-7
Online ISBN: 978-3-319-92612-4
eBook Packages: Computer ScienceComputer Science (R0)