Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Distributed Coordination Infrastructure for Attribute-Based Interaction

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2018)

Abstract

Collective-adaptive systems offer an interesting notion of interaction where run-time contextual data are the driving force for interaction. The attribute-based interaction has been proposed as a foundational theoretical framework to model CAS interactions. The framework permits a group of partners to interact by considering their run-time properties and their environment. In this paper, we lay the basis for an efficient, correct, and distributed implementation of the attribute-based interaction framework. First, we present three coordination infrastructures for message exchange, then we prove their correctness, and finally we model them in terms of stochastic processes to evaluate their performance.

This research has been supported by the European projects IP 257414 ASCENS and STReP 600708 QUANTICOL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the sake of brevity, we omit the symmetric rule of Com.

  2. 2.

    Go implementations: https://github.com/giulio-garbi/goat.

  3. 3.

    The simulator: https://bitbucket.org/Lazkany/abcsimulator.

References

  1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_1

    Chapter  Google Scholar 

  2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_38

    Chapter  Google Scholar 

  3. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming the Interactions of Collective Adaptive Systems by Relying on Attribute-based Communication. ArXiv e-prints, October 2017. http://arxiv.org/abs/1711.06092

  4. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for attribute-based communication. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC 2015, pp. 1840–1845. ACM (2015). https://doi.org/10.1145/2695664.2695668

  5. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)

    Google Scholar 

  6. Albert, E., Lanese, I. (eds.): FORTE 2016. LNCS, vol. 9688. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8

    Book  Google Scholar 

  7. Chang, J.M., Maxemchuk, N.F.: Reliable broadcast protocols. ACM Trans. Comput. Syst. 2, 251–273 (1984). https://doi.org/10.1145/989.357400

    Article  Google Scholar 

  8. Cristian, F.: Asynchronous atomic broadcast. IBM Tech. Discl. Bull. 33(9), 115–116 (1991)

    Google Scholar 

  9. Cristian, F., Mishra, S.: The pinwheel asynchronous atomic broadcast protocols. In: Second International Symposium on Autonomous Decentralized Systems, Proceedings, ISADS 1995, pp. 215–221. IEEE (1995). https://doi.org/10.1109/ISADS.1995.398975

  10. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang at work. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 485–497. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_38

    Chapter  Google Scholar 

  11. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput. Surv. 36, 372–421 (2004). https://doi.org/10.1145/1041680.1041682

    Article  Google Scholar 

  12. Ferscha, A.: Collective adaptive systems. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2015 Adjunct, pp. 893–895. ACM, New York (2015). https://doi.org/10.1145/2800835.2809508

  13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/3149.214121

    Article  MathSciNet  MATH  Google Scholar 

  14. Jensen, T.R., Toft, B.: Graph Coloring Problems, vol. 39. Wiley, New York (1995)

    MATH  Google Scholar 

  15. Lopes, L., Silva, F., Vasconcelos, V.T.: A virtual machine for a process calculus. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 244–260. Springer, Heidelberg (1999). https://doi.org/10.1007/10704567_15

    Chapter  Google Scholar 

  16. Prasad, K.V.S.: A calculus of broadcasting systems. In: Abramsky, S., Maibaum, T.S.E. (eds.) CAAP 1991. LNCS, vol. 493, pp. 338–358. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-53982-4_19

    Chapter  Google Scholar 

  17. Robertson, J.B.: Continuous-time Markov chains (W. J. Anderson). SIAM Rev. 36(2), 316–317 (1994)

    Article  Google Scholar 

  18. Sangiorgi, D., Walker, D.: The PI-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Schulze, T.P.: Efficient kinetic Monte Carlo simulation. J. Comput. Phys. 227(4), 2455–2462 (2008). http://www.sciencedirect.com/science/article/pii/S0021999107004755

    Article  MathSciNet  Google Scholar 

  20. Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-Work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehia Abd Alrahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alrahman, Y.A., De Nicola, R., Garbi, G., Loreti, M. (2018). A Distributed Coordination Infrastructure for Attribute-Based Interaction. In: Baier, C., Caires, L. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2018. Lecture Notes in Computer Science(), vol 10854. Springer, Cham. https://doi.org/10.1007/978-3-319-92612-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92612-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92611-7

  • Online ISBN: 978-3-319-92612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics