Nothing Special   »   [go: up one dir, main page]

Skip to main content

Image Clustering Based on Frequent Approximate Subgraph Mining

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2018)

Abstract

Frequent approximate subgraph (FAS) mining and graph clustering are important techniques in Data Mining with great practical relevance. In FAS mining, some approximations in data are allowed for identifying graph patterns, which could be used for solving other pattern recognition tasks like supervised classification and clustering. In this paper, we explore the use of the patterns identified by a FAS mining algorithm on a graph collection for image clustering. Some experiments are performed on image databases for showing that by using the FASs mined from a graph collection under the bag of features image approach, it is possible to improve the clustering results reported by other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.csc.liv.ac.uk/~frans/KDD/Software/ImageGenerator/imageGenerator.html.

References

  1. Flores-Garrido, M., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: Graph clustering via inexact patterns. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 391–398. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12568-8_48

    Chapter  Google Scholar 

  2. Morales-González, A., Acosta-Mendoza, N., Gago-Alonso, A., García-Reyes, E., Medina-Pagola, J.: A new proposal for graph-based image classification using frequent approximate subgraphs. Pattern Recogn. 47(1), 169–177 (2014)

    Article  Google Scholar 

  3. Herrera-Semenets, V., Acosta-Mendoza, N., Gago-Alonso, A.: A Framework for intrusion detection based on frequent subgraph mining. In: The 2nd SDM Workshop on Mining Networks and Graphs: A Big Data Analytic Challenge (SDM-Networks 2015), Vancouver, BC, Canada (2015)

    Google Scholar 

  4. Bai, L., Cheng, X., Liang, J., Guo, Y.: Fast graph clustering with a new description model for community detection. Inf. Sci. 388–389, 37–47 (2017)

    Article  Google Scholar 

  5. Yan, Y., Liu, G., Wang, S., Zhang, J., Zheng, K.: Graph-based clustering and ranking for diversified image search. Multimed. Syst. 23, 41–52 (2017)

    Article  Google Scholar 

  6. Viet-Vu, V., Hong-Quan, D.: Graph-based clustering with background knowledge. In: Proceedings of the Eighth International Symposium on Information and Communication Technology, SoICT 2017, pp. 167–172. ACM, New York (2017)

    Google Scholar 

  7. Ye, W., Zhou, L., Sun, X., Plant, C., Böhm, C.: Attributed graph clustering with unimodal normalized cut. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 601–616. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_36

    Chapter  Google Scholar 

  8. Rao, B., Mishra, B.: An approach to clustering of text documents using graph mining techniques. Int. J. Rough Sets Data Anal. (IJRSDA) 4(1), 18 (2017)

    Google Scholar 

  9. Jia, Y., Zhang, J., Huan, J.: An efficient graph-mining method for complicated and noisy data with real-world applications. Knowl. Inf. Syst. 28(2), 423–447 (2011)

    Article  Google Scholar 

  10. Flores-Garrido, M., Carrasco-Ochoa, J., Martínez-Trinidad, J.: AGraP: an algorithm for mining frequent patterns in a single graph using inexact matching. Knowl. Inf. Syst. 42(2), 1–22 (2015)

    Google Scholar 

  11. Chen, C., Yan, X., Zhu, F., Han, J.: gApprox: mining frequent approximate patterns from a massive network. In: International Conference on Data Mining (ICDM 2007), pp. 445–450 (2007)

    Google Scholar 

  12. González, J., Holder, L., Cook, D.: Graph-based concept learning. In: Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, pp. 377–381. AAAI Press, Key West (2001)

    Google Scholar 

  13. Acosta-Mendoza, N., Gago-Alonso, A., Medina-Pagola, J.: Frequent approximate subgraphs as features for graph-based image classification. Knowl. Based Syst. 27, 381–392 (2012)

    Article  Google Scholar 

  14. Emmert-Streib, F., Dehmer, M., Shi, Y.: Fifty years of graph matching, network alignment and network comparison. Inf. Sci. 346, 1–22 (2016)

    MathSciNet  Google Scholar 

  15. Gutierrez-Rodríguez, A., Martínez-Trinidad, J.F., García-Borroto, M., Carrasco-Ochoa, J.: Mining patterns for clustering on numerical datasets using unsupervised decision trees. Knowl. Based Syst. 82, 70–79 (2015)

    Article  Google Scholar 

  16. Gutierrez-Rodríguez, A., Martínez-Trinidad, J.F., García-Borroto, M., Carrasco-Ochoa, J.: Mining patterns for clustering using unsupervised decision trees. Intell. Data Anal. 19(6), 1297–1310 (2015)

    Article  Google Scholar 

  17. Flores-Garrido, M., Carrasco-Ochoa, J., Martínez-Trinidad, J.: Mining maximal frequent patterns in a single graph using inexact matching. Knowl. Based Syst. 66, 166–177 (2014)

    Article  Google Scholar 

  18. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging, and its application to diatom identification. In: Hancock, E., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45028-9_9

    Chapter  MATH  Google Scholar 

  19. Neuhaus, M., Bunke, H.: A probabilistic approach to learning costs for graph edit distance. In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proceedings 17th International Conference on Pattern Recognition, Cambridge, United Kingdom, vol. 3, pp. 389–393 (2004)

    Google Scholar 

  20. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007)

    Article  MathSciNet  Google Scholar 

  21. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs. Technical report, IEEE Transactions on Knowledge and Data Engineering (2002)

    Google Scholar 

  22. Gago-Alonso, A., Puentes-Luberta, A., Carrasco-Ochoa, J., Medina-Pagola, J., Martínez-Trinidad, J.: A new algorithm for mining frequent connected subgraphs based on adjacency matrices. Intell. Data Anal. 14, 385–403 (2010)

    Google Scholar 

  23. O’Hara, S., Draper, B.: Introduction to the bag of features paradigm for image classification and retrieval. Computing Research Repository (CoRR) abs/1101.3354 (2011)

    Google Scholar 

  24. Acosta-Mendoza, N.: Clasificación de imágenes basada en subconjunto de subgrafos frecuentes aproximados. Master’s thesis, The National Institute of Astrophysics, Optics and Electronics of Mexico (INAOE), July 2013

    Google Scholar 

  25. Pinilla-Buitrago, L.A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: New penalty scheme for optimal subsequence bijection. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 206–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41822-8_26

    Chapter  Google Scholar 

  26. Rand, M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  27. McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of California Press (1967)

    Google Scholar 

  28. Arthur, D., Vassilvitskii, S.: K-means: the advantages of carefull seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. ACM (2007)

    Google Scholar 

  29. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2006)

    Google Scholar 

Download references

Acknowledgment

This work was partly supported by the National Council of Science and Technology of Mexico (CONACyT) through the scholarship grant 287045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niusvel Acosta-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acosta-Mendoza, N., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Gago-Alonso, A., Medina-Pagola, J.E. (2018). Image Clustering Based on Frequent Approximate Subgraph Mining. In: Martínez-Trinidad, J., Carrasco-Ochoa, J., Olvera-López, J., Sarkar, S. (eds) Pattern Recognition. MCPR 2018. Lecture Notes in Computer Science(), vol 10880. Springer, Cham. https://doi.org/10.1007/978-3-319-92198-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92198-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92197-6

  • Online ISBN: 978-3-319-92198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics