Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modelling 3-Coloring of Polygonal Trees via Incremental Satisfiability

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10880))

Included in the following conference series:

Abstract

A novel method to model the 3-coloring on polygonal tree graphs is presented. This proposal is based on the logical specification of the constraints generated for a valid 3-coloring on polygonal graphs. In order to maintain a polynomial time procedure, the logical constraints are formed in a dinaymic way. At the same time, the graph is traversing in postorder, resulting in a polynomial time instance of the incremental satisfiability problem. This proposal can be extended for considering other polynomial time instances of the 3-coloring problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Byskov, J.M.: Exact algorithms for graph colouring and exact satisfiability. Ph.D. thesis, University of Aarbus, Denmark (2005)

    Google Scholar 

  2. De Ita, G., Marcial-Romero, R., Lopez, P., Gonzalez, M.: Linear-time algorithms for computing the Merrifield-Simmons index on polygonal trees. MATCH Commun. Math. Comput. Chem. 79(1), 55–78 (2018)

    MathSciNet  Google Scholar 

  3. Došlić, T., Måløy, F.: Chain hexagonal cacti: matchings and independent sets. Discret. Math. 310, 1676–1690 (2010)

    Article  MathSciNet  Google Scholar 

  4. Dvor̃ák, Z., Král, D., Thomas, R.: Three-coloring triangle-free graphs on surfaces. In: Proceedings of 20th ACM-SIAM Symposium on Discrete Algorithms, pp. 120–129 (2009)

    Google Scholar 

  5. Mertzios, G.B., Spirakis, P.G.: Algorithms and almost tight results for 3-colorability of small diameter graphs. Technical report (2012). arxiv.org/pdf/1202.4665v2.pdf

  6. Mouhoub, M., Sadaoui, S.: Systematic versus non systematic methods for solving incremental satisifiability. Int. J. Artif. Intell. Tools 16(1), 543–551 (2007)

    Article  Google Scholar 

  7. Stacho, J.: 3-colouring AT-free graphs in polynomial time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6507, pp. 144–155. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17514-5_13

    Chapter  Google Scholar 

  8. Shiu, W.C.: Extremal Hosoya index and Merrifield-Simmons index of hexagonal spiders. Discret. Appl. Math. 156, 2978–2985 (2008)

    Article  MathSciNet  Google Scholar 

  9. Wagner, S., Gutman, I.: Maxima and minima of the Hosoya index and the Merrifield-Simmons index. Acta Applicandae Mathematicae 112(3), 323–346 (2010)

    Article  MathSciNet  Google Scholar 

  10. Wieringa, S.: Incremental satisfiability solving and its applications. Ph.D. thesis, Department of Computer Science and Engineering, Alto University (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina López-Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Ramírez, C., De Ita, G., Neri, A. (2018). Modelling 3-Coloring of Polygonal Trees via Incremental Satisfiability. In: Martínez-Trinidad, J., Carrasco-Ochoa, J., Olvera-López, J., Sarkar, S. (eds) Pattern Recognition. MCPR 2018. Lecture Notes in Computer Science(), vol 10880. Springer, Cham. https://doi.org/10.1007/978-3-319-92198-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92198-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92197-6

  • Online ISBN: 978-3-319-92198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics