Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cuckoo Search via Lévy Flight Applied to Optimal Water Supply System Design

  • Conference paper
  • First Online:
Recent Trends and Future Technology in Applied Intelligence (IEA/AIE 2018)

Abstract

Designing optimal water supply systems is an important purpose of any urban system that involves relevant installation, operation and maintenance costs. However, achieving the optimal design is known to be a complex task, indeed the corresponding mathematical model for this problem leads to a non-linear and non-convex problem classified as NP-hard. In this paper, we propose using the cuckoo search algorithm which a modern bio-inspired metaheuristic based on the obligate brood parasitic behavior of cuckoo birds. This behavior is combined with the interesting Lévy flight, which mimic the exploration of some birds and flies, that move by combining straight flights and ninety degrees turns. The proposed approach results in a fast convergence algorithm able to noticeably reduce the number of objective function evaluations needed to solve this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2(4), e354 (2007)

    Article  Google Scholar 

  2. Baños, R., Gil, C., Reca, J., Montoya, F.G.: A memetic algorithm applied to the design of water distribution networks. Appl. Soft Comput. 10(1), 261–266 (2010)

    Article  Google Scholar 

  3. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)

    Article  Google Scholar 

  4. Cunha, M., Sousa, J.: Water distribution network design optimization: simulated annealing approach. J. Water Resour. Plann. Manage. 125(4), 215–221 (1999)

    Article  Google Scholar 

  5. Dandy, G., Simpson, A., Murphy, L.: An improved genetic algorithm for pipe network optimization. Water Resour. Res. 32(2), 449–458 (1996)

    Article  Google Scholar 

  6. Eusuff, M., Lansey, K.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manage. ASCE 129(3), 210–225 (2003)

    Article  Google Scholar 

  7. Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Eng. Optim. 38(3), 259–277 (2006)

    Article  Google Scholar 

  8. Gupta, I., Gupta, A., Khanna, P.: Genetic algorithm for optimization of water distribution systems. Environ. Modell. Softw. 14(5), 437–446 (1999)

    Article  Google Scholar 

  9. Halhal, D., Walters, G., Ouazar, D., Savic, D.: Water network rehabilitation with structured messy genetic algorithms. J. Water Resour. Plan. Manage. 123(3), 137–146 (1997)

    Article  Google Scholar 

  10. Jacoby, S.L.S.: Design of optimal hydraulic networks. J. Hydraul. Div. 94(3), 641–661 (1968)

    Google Scholar 

  11. Keedwell, E., Khu, S.-T.: A hybrid genetic algorithm for the design of water distribution networks. Eng. Appl. AI 18(4), 461–472 (2005)

    Google Scholar 

  12. Lin, M., Liu, Y., Liu, G., Chu, C.: Scatter search heuristic for least-cost design of water distribution networks. Eng. Optim. 39(7), 857–876 (2007)

    Article  Google Scholar 

  13. Maier, H., Simpsom, A., Zecchin, A., Foong, W., Phang, K., Seah, H., Tan, C.: Ant colony optimization for the design of water distribution systems. J. Water Resour. Plan. Manage. ASCE 129(3), 200–209 (2003)

    Article  Google Scholar 

  14. Monfroy, E., Castro, C., Crawford, B., Soto, R., Paredes, F., Figueroa, C.: A reactive and hybrid constraint solver. J. Exp. Theoret. Artif. Intell. 25(1), 1–22 (2013)

    Article  Google Scholar 

  15. Montalvo, I., Izquierdo, J., Pérez, R., Tung, M.M.: Particle swarm optimization applied to the design of water supply systems. Comput. Math. Appl. 56(3), 769–776 (2008)

    Article  MathSciNet  Google Scholar 

  16. Montalvo, I., Izquierdo, J., Pérez-García, R., Herrera, M.: Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems. Eng. Appl. AI 23(5), 727–735 (2010)

    Google Scholar 

  17. Ostfeld, A., Tubaltzev, A.: Ant colony optimization for least cost design and operation of pumping and operation of pumping water distribution systems. J. Water Resour. Plann. Manage. 134(2), 107–118 (2008)

    Article  Google Scholar 

  18. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226, 1830–1844 (2007)

    Article  MathSciNet  Google Scholar 

  19. Pitchai, R.: A model for designing water distribution pipe networks. Ph.D. thesis, Harvard University (1966)

    Google Scholar 

  20. Prasad, D., Park, N.: Multiobjective genetic algorithms for design of water distribution networks. J. Water Resour. Plan. Manage. 130(1), 73–82 (2004)

    Article  Google Scholar 

  21. Quindry, G., Brill, E., Lienman, J.: Water distribution system design criteria. Technical report, Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (1979)

    Google Scholar 

  22. Savic, D., Walters, G.: Genetic algorithms for least-cost design of water distribution networks. J. Water Resour. Plan. Manage. ASCE 123(2), 67–77 (1997)

    Article  Google Scholar 

  23. Schaake, J., Lai, D.: Linear programming and dynamic programming applications to water distribution network design. Technical report 116, Hydrodynamics Laboratory, MIT, Cambridge, MA (1969)

    Google Scholar 

  24. Sedki, A., Ouazar, D.: Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems. Adv. Eng. Inf. 26(3), 582–591 (2012)

    Article  Google Scholar 

  25. Shamir, U., Alperovits, E.: Design of optimal water distribution systems. Water Resour. Res. 13(6), 885–900 (1977)

    Article  Google Scholar 

  26. Shlesinger, M.F.: Search research. Nature 443, 281–282 (2006)

    Article  Google Scholar 

  27. Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.): Lévy Flights and Related Topics in Phyics. Springer, Heidelberg (2007)

    Google Scholar 

  28. Simpson, A., Murphy, L., Dandy, G.: Genetic algorithms compared to other techniques for pipe optimisation. J. Water Resour. Plan. Manage. ASCE 120(4), 423–443 (1994)

    Article  Google Scholar 

  29. Soto, R., Crawford, B., Galleguillos, C., Monfroy, E., Paredes, F.: A pre-filtered cuckoo search algorithm with geometric operators for solving sudoku problems. Sci. World J. 2014, 12 (2014). Article ID 465359

    Article  Google Scholar 

  30. Suribabu, C.R.: Differential evolution algorithm for optimal design of water distribution networks. J. Hydroinf. 12(1), 66–82 (2010)

    Article  Google Scholar 

  31. Suribabu, C.R., Neelakantan, T.R.: Design of water distribution networks using particle swarm optimization. J. Urban Water 3(2), 111–120 (2006)

    Article  Google Scholar 

  32. Vairavamoorthy, K., Ali, M.: Water network rehabilitation with structured messy genetic algorithms. Comput. Aided Civil Infrastruct. Eng. 15(5), 374–382 (2000)

    Article  Google Scholar 

  33. Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

    Google Scholar 

  34. Yates, D.F., Templeman, A.B., Boffey, T.B.: The computational complexity of the problem of determining least capital cost designs for water supply networks. Eng. Optim. 7(2), 143–155 (1984)

    Article  Google Scholar 

  35. Zecchin, A.C., Simpson, A.R., Maier, H.R., Leonard, M., Roberts, A.J., Berrisford, M.J.: Application of two ant colony optimisation algorithms to water distribution system optimisation. Math. Comput. Modell. 44(5–6), 451–468 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455. Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1171243. Rodrigo Olivares is supported by CONICYT/FONDEF/IDeA/ID16I10449, FONDECYT/STIC-AMSU/17STIC-03, FONDECYT/MEC/MEC80170097, and Postgraduate Grant Pontificia Universidad Católica de Valparaíso (INF - PUCV 2015–2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricardo Soto , Broderick Crawford , Rodrigo Olivares or Carlos Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soto, R., Crawford, B., Olivares, R., Castro, C., Escárate, P., Calderón, S. (2018). Cuckoo Search via Lévy Flight Applied to Optimal Water Supply System Design. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92058-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92057-3

  • Online ISBN: 978-3-319-92058-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics