Nothing Special   »   [go: up one dir, main page]

Skip to main content

Least Median of Squares (LMS) and Least Trimmed Squares (LTS) Fitting for the Weighted Arithmetic Mean

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations (IPMU 2018)

Abstract

We look at different approaches to learning the weights of the weighted arithmetic mean such that the median residual or sum of the smallest half of squared residuals is minimized. The more general problem of multivariate regression has been well studied in statistical literature, however in the case of aggregation functions we have the restriction on the weights and the domain is also usually restricted so that ‘outliers’ may not be arbitrarily large. A number of algorithms are compared in terms of accuracy and speed. Our results can be extended to other aggregation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All fitting performed in R [6] with details available at http://aggregationfunctions.wordpress.com.

  2. 2.

    Achieved in R using solve(), provided the matrix is non-singular. In the event of singular matrices, the particular iteration contributed nothing to the output.

References

  1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  2. Beliakov, G.: Construction of aggregation functions from data using linear programming. Fuzzy Sets Syst. 160, 65–75 (2009)

    Article  MathSciNet  Google Scholar 

  3. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24753-3

    Book  Google Scholar 

  4. Gagolewski, M.: Data Fusion: Theory, Methods and Applications. Institute of Computer Science, Polish Academy of Sciences, Warsaw (2015)

    Google Scholar 

  5. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388), 871–880 (1984)

    Article  MathSciNet  Google Scholar 

  6. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017)

    Google Scholar 

  7. Dallal, G.E., Rousseeuw, P.J.: LMSMVE: a program for least median of squares regression and robust distances. Comput. Biomed. Res. 25, 384–391 (1992)

    Article  Google Scholar 

  8. Rousseeuw, P.J., Hubert, M.: Recent developments in PROGRESS. In: \(L_1\)-Statistical Procedures and Related Topics. IMS Lecture Notes - Monograph Series, vol. 31, pp. 201–214 (1997)

    Google Scholar 

  9. Farebrother, R.W.: The least median of squared residuals procedure. In: Farebrother, R.W. (ed.) \(L_1\)-Norm and \(L_\infty \)-Norm Estimation. BRIEFSSTATIST, pp. 37–41. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36300-9_6

    Chapter  Google Scholar 

  10. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  11. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68791-7

    Book  MATH  Google Scholar 

  12. Beliakov, G., James, S.: Citation-based journal ranks: the use of fuzzy measures. Fuzzy Sets Syst. 167, 101–119 (2011)

    Article  MathSciNet  Google Scholar 

  13. Beliakov, G., James, S.: Using linear programming for weights identification of generalized Bonferroni means in R. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 35–44. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34620-0_5

    Chapter  Google Scholar 

  14. Bloomfield, P., Steiger, W.: Least Absolute Deviations: Theory Applications and Algorithms. Birkhauser, Basel (1983)

    MATH  Google Scholar 

  15. Bartoszuk, M., Beliakov, G., Gagolewski, M., James, S.: Fitting aggregation functions to data: part I - linearization and regularization. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 611, pp. 767–779. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40581-0_62

    Chapter  Google Scholar 

  16. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)

    Article  MathSciNet  Google Scholar 

  17. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.) Advances in Optimization and Numerical Analysis. MAIA, vol. 275, pp. 51–67. Kluwer Academic, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5_4

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beliakov, G., Gagolewski, M., James, S. (2018). Least Median of Squares (LMS) and Least Trimmed Squares (LTS) Fitting for the Weighted Arithmetic Mean. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91476-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91475-6

  • Online ISBN: 978-3-319-91476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics