Abstract
Distributed SPARQL query processing frameworks are categorized on the bases of query computation into relation, graph and hybrid based distributed query computing. By exploring the historical achievements under these umbrellas we try to motivate the researchers, to define such a framework for Graph Based Distributed SPARQL Query Processing, which supports Full of SPARQL and also explains the principles for employing optimization. In this study we elaborate all popular existing frameworks for distributed query processing and organize a comparative study according to the facts and figures. We identify different limitations and discrepancies in all approaches e.g. only few support the Full of SPARQL, all these are optimized for different kind of benchmarks and all carries own partitioning strategy. We study some valuable query optimization techniques and their implementation. How these techniques are employed in distributed environment. Finally, some future work is highlighted on Graph Based Distributed SPARQL Query Processing which will support all features of SPARQL 1.1 and well optimized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
W3C: RDF Primer. http://www.w3.org/TR/rdf-primer/. Accessed 1 Mar 2018
W3C: RDF 1.1. https://www.w3.org/TR/rdf11-new/. Accessed 4 Mar 2018
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation (2008)
DBpedia. http://dbpedia.org/. Accessed 3 Mar 2018
PubChemRDF. http://pubchem.ncbi.nlm.nih.gov/rdf/. Accessed 26 Feb 2018
Bio2RDF. http://bio2rdf.org/. Accessed 20 Feb 2018
UniProt. http://www.uniprot.org/. Accessed 21 Feb 2018
SPARQL1.1. https://www.w3.org/TR/sparql11-query/. Accessed 4 Mar 2018
Koutris, P.: Query processing for massively parallel systems, University of Washington, pp. 2–5 (2015)
Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale RDF data. Proc. VLDB Endow. 6, 265–276 (2013)
Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: mapping SPARQL to Pig Latin. In: Proceedings of SWIM 2011, pp. 4:1–4:8 (2011)
Hose, K., Schenkel, R.: WARP: workload-aware replication and partitioning for RDF. In: Proceedings of ICDE 2013 Workshops (2013)
Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing. In: Proceedings of SIGMOD (2014)
Schätzle, A., Przyjaciel-Zablocki, M., Neu, A., Lausen, G.: Sempala: interactive SPARQL query processing on hadoop. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 164–179. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_11
Kaoudi, Z., Manolescu, I., Zampetakis, S.: CliqueSquare: flat plans for massively parallel RDF queries. In: Proceedings of ICDE 2015, pp. 771–782 (2015)
Hammoud, M., Rabbou, D.A., Nouri, R., Beheshti, S.-M.-R., Sakr, S.: DREAM: distributed RDF engine with adaptive query planner and minimal communication. Proc. VLDB 8(6), 654–665 (2015)
Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., Lausen, G.: S2X: graph-parallel querying of RDF with GraphX. In: Wang, F., Luo, G., Weng, C., Khan, A., Mitra, P., Yu, C. (eds.) Big-O(Q)/DMAH -2015. LNCS, vol. 9579, pp. 155–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41576-5_12
Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB J. 25(3), 355–380 (2016)
Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing SPARQL queries over distributed RDF graphs. VLDB J. 25(2), 243–268 (2016)
Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF querying with SPARQL on Spark. Proc. VLDB 9(10), 804–815 (2016)
Dadhaniya, D.R., Makwana, A.: Survey paper for different SPARQL query optimization techniques. MJSRE J. 2(8), 83–85 (2016)
Özsu, M.T.: A survey of RDF data management systems. Front. Comput. Sci. 10(3), 418–432 (2016)
Ma, Z., Capretz, M.A.M., Yan, L.: Storing massive resource description framework (RDF) data: a survey. Knowl. Eng. Rev 31(4), 391–413 (2016)
Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental comparison of distributed SPARQL engines for very large RDF data. Proc. VLDB 10(13), 2049–2060 (2017)
Aljanaby, A., Abuelrub, E., Odeh, M.: A survey of distributed query optimization. Int. Arab J. Inf. Technol. 2(1), 48–57 (2005)
Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and retrieval in Jena2. In: Proceedings of SWDB, pp. 131–150 (2003)
Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic Web data management using vertical partitioning. In: Proceedings of VLDB 2007, pp. 411–423. (2007)
Schätzle, A.: Distributed RDF querying on hadoop, University of Freiburg, pp. 124–127 (2016)
Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX: graph processing in a distributed dataflow framework. In: Proceedings of 11th USENIX OSDI 2014, pp. 599–613 (2014)
Özsu, M.T., Valduriez, P.: Optimization of distributed queries. In: Özsu, M.T., Valduriez, P. (eds.) Principles of Distributed Database Systems, 3rd edn, pp. 245–295. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8834-8_8
Hartig, O., Heese, R.: The SPARQL query graph model for query optimization. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 564–578. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72667-8_40
Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C.: SPARQL basic graph pattern optimization using selectivity estimation. In: Proceedings of WWW 2008, pp. 595–604 (2008)
Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proc. VLDB 1(1), 647–659 (2008)
Huang, H., Liu, C.: Estimating selectivity for joined RDF triple patterns. In: Proceedings of CIKM 2011, pp. 1435–1444 (2011)
Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_29
Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.-U., Umbrich, J.: Data summaries for on-demand queries over linked data. In: Proceedings of 19th WWW 2010 (2010)
Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_19
Wang, X., Tiropanis, T., Davis, H.C.: Evaluating graph traversal algorithms for distributed SPARQL query optimization. In: Pan, J.Z., Chen, H., Kim, H.-G., Li, J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS, vol. 7185, pp. 210–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29923-0_14
Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: Optimization of distributed SPARQL queries using Edmonds algorithm and Prims algorithm. In: Proceedings of CSE 2009, pp. 330–337 (2009)
Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)
Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. 71B, 233–240 (1967)
Reddy, B.R.K., Kumar, P.S.: Optimizing SPARQL queries over the web of linked data. In: Proceedings Workshop on Semantic Data Management (VLDB) (2010)
Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix bit loaded: a scalable lightweight join query Processor for RDF data. In: Proceedings of WWW 2010, pp. 41–50 (2010)
Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)
Polleres, A., Peter, J.: On the relation between SPARQL 1.1 and answer set programming. J. Appl. Non-Class. Logics 23(1–2), 159–212 (2013)
Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_8
Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property paths. In: Corcho, O., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_1
Zhang, X.: On the primitivity of SPARQL 1.1 operators. In: Proceedings of WWW 2017, pp. 875–876 (2017)
Kontchakov, R., Kostylev, E.V: On expressibility of non-monotone operators in SPARQL. In: Proceedings of KR 2016, pp. 369–378 (2016)
Feng, J., Meng, C., Song, J., Zhang, X., Feng, Z., Zou, L.: SPARQL query parallel Processing: a survey. In: Proceedings of BigData Congress 2017, pp. 444–451 (2017)
Acknowledgments
This work is supported by the National Natural Science Foundation of China (61502336, 61672377), the National Key Research and Development Program of China (2016YFB1000603), and the Key Technology Research and Development Program of Tianjin (16YFZCGX00210).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Yasin, M.Q., Zhang, X., Haq, R., Feng, Z., Yitagesu, S. (2018). A Comprehensive Study for Essentiality of Graph Based Distributed SPARQL Query Processing. In: Liu, C., Zou, L., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10829. Springer, Cham. https://doi.org/10.1007/978-3-319-91455-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-91455-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91454-1
Online ISBN: 978-3-319-91455-8
eBook Packages: Computer ScienceComputer Science (R0)