Abstract
In this paper, a new method of image retrieval is proposed. This concerns retrieving color digital images from a database that contains a specific linguistic description considered within the theory of fuzzy granulation and computing with words. The linguistic description is generated by use of the CIE chromaticity color model. The image retrieval is performed in different way depending on users’ knowledge about the color image. Specific database queries can be formulated for the image retrieval.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alain, K.M., Nathanael, K.M., Rostin, M.M.: Integrating fuzzy concepts to design a fuzzy data warehouse. Int. J. Comput. 27(1), 112–132 (2017)
Almohammadi, K., Hagras, H., Alghazzawi, D., Aldabbagh, G.: A survey of artificial intelligence techniques employed for adaptive educational systems within e-learning platforms. J. Artif. Intell. Soft Comput. Res. 7(1), 47–64 (2017)
Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and TOPSIS for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)
Biere, M.: Business Intelligence for the Enterprise. Prentice Hall, Upper Saddle River (2003)
Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)
Fortner, B., Meyer, T.E.: Number by Color. A Guide to Using Color to Undersdand Technical Data. Springer, Heidelberg (1997). https://doi.org/10.1007/978-1-4612-1892-0
Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–1239 (2017)
Marshall, A.M., Gunasekaran, S.: Image retrieval - a review. Int. J. Eng. Res. Technol. 3(5), 1128–1131 (2014)
Pawlak, Z: Granularity of knowledge, indiscernibility and rough sets. In: IEEE International Conference Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, vol. 1, pp. 106–110 (1998)
Prasad, M., Liu, Y.-T., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)
Rakus-Andersson, E.: Fuzzy and Rough Techniques in Medical Diagnosis and Medication. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49708-0
Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)
Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1802-4
Wiaderek, K.: Fuzzy sets in colour image processing based on the CIE chromaticity triangle. In: Rutkowska, D., Cader, A., Przybyszewski, K. (eds.) Selected Topics in Computer Science Applications. Academic Publishing House EXIT, Warsaw, Poland, pp. 3–26 (2011)
Wiaderek, K., Rutkowska, D.: Fuzzy granulation approach to color digital picture recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 412–425. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_37
Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Color digital picture recognition based on fuzzy granulation approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 319–332. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_28
Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Information granules in application to image recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 649–659. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_58
Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: New algorithms for a granular image recognition system. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 755–766. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_67
Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Linguistic description of color images generated by a granular recognition system. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 603–615. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_54
Wiaderek, K., Rutkowska, D.: Linguistic description of images based on fuzzy histograms. In: Choraś, M., Choraś, R. (eds.) IP&C 2017. AISC, vol. 681, pp. 27–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68720-9_4
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)
Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)
Zadrozny, S., De Tre, G., De Caluve, R., Kacprzyk, J.: An overview of fuzzy approaches to flexible database querying. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, vol. I, pp. 34–54. Information Science Reference (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Wiaderek, K., Rutkowska, D., Rakus-Andersson, E. (2018). Image Retrieval by Use of Linguistic Description in Databases. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-91262-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91261-5
Online ISBN: 978-3-319-91262-2
eBook Packages: Computer ScienceComputer Science (R0)