Nothing Special   »   [go: up one dir, main page]

Skip to main content

Feature Extraction in Subject Classification of Text Documents in Polish

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

  • 2077 Accesses

Abstract

In this work we evaluate two different methods for deriving features for a subject classification of text documents. The first method uses the standard Bag-of-Words (BoW) approach, which represents the documents with vectors of frequencies of selected terms appearing in the documents. This method heavily relies on the natural language processing (NLP) tools to properly preprocess text in the grammar- and inflection-conscious way. The second approach is based on the word-embedding technique recently proposed by Mikolov and does not require any NLP preprocessing. In this method the words are represented as vectors in continuous space and this representation of words is used to construct the feature vectors of the documents. We evaluate these fundamentally different approaches in the task of classification of Polish language Wikipedia articles with 34 subject areas. Our study suggests that the word-embedding based features seem to outperform the standard NLP-based features providing sufficiently large training dataset is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eder, M., Piasecki, M., Walkowiak, T.: An open stylometric system based on multilevel text analysis. Cogn. Stud.—Etudes Cogn. (17) (2017). https://doi.org/10.11649/cs.1430

  2. Goodman, J.: Classes for fast maximum entropy training. In: Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, (Cat. No.01CH37221), vol. 1, pp. 561–564 (2001). https://doi.org/10.1109/ICASSP.2001.940893

  3. Harris, Z.: Distributional structure. Word (1954)

    Google Scholar 

  4. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Short Papers, vol. 2, pp. 427–431. Association for Computational Linguistics (2017). http://aclweb.org/anthology/E17-2068

  5. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781

  7. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751. Association for Computational Linguistics, Atlanta, June 2013. http://www.aclweb.org/anthology/N13-1090

  8. Młynarczyk, K., Piasecki, M.: Wiki test - 34 categories (2015). http://hdl.handle.net/11321/217. CLARIN-PL digital repository

  9. Młynarczyk, K., Piasecki, M.: Wiki train - 34 categories (2015). http://hdl.handle.net/11321/222. CLARIN-PL digital repository

  10. Radziszewski, A.: A tiered CRF tagger for Polish. In: Bembenik, R., Skonieczny, L., Rybinski, H., Kryszkiewicz, M., Niezgodka, M. (eds.) Intelligent Tools for Building a Scientific Information Platform. Studies in Computational Intelligence, vol. 467, pp. 215–230. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35647-6_16

    Chapter  Google Scholar 

  11. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    Article  Google Scholar 

  12. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1986)

    Google Scholar 

  13. Torkkola, K.: Discriminative features for text document classification. Formal Pattern Anal. Appl. 6(4), 301–308 (2004). https://doi.org/10.1007/s10044-003-0196-8

  14. Walkowiak, T.: Language processing modelling notation - orchestration of NLP microservices. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) DepCoS-RELCOMEX 2017. AISC, pp. 464–473. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-59415-6_44

    Google Scholar 

  15. Walkowiak, T., Malak, P.: Polish texts topic classification evaluation. In: Proceedings of the 10th International Conference on Agents and Artificial Intelligence, ICAART 2018, vol. 2, pp. 515–522. INSTICC, SciTePress (2018)

    Google Scholar 

Download references

Acknowledgement

This work was sponsored by National Science Centre, Poland (grant 2016/21/B/ST6/02159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Walkowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walkowiak, T., Datko, S., Maciejewski, H. (2018). Feature Extraction in Subject Classification of Text Documents in Polish. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics