Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pattern Recognition Solutions for Fake News Detection

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2018)

Abstract

Information is a crucial value nowadays in network digital societies. Therefore, the phenomenon of “fake news” is a serious problem in modern media and communication, e.g. with respect to information spreading within the society about current events and incidents. Fake news are currently a problem for media and broadcasting sector, for citizens, but also for homeland security. In this paper we present and overview the problem of fake news, we show the ideas and solutions for fake news detection, and we present our initial results for one of such approaches based on forged images detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017). https://doi.org/10.3386/w23089

    Article  Google Scholar 

  2. Euobserver’s Article. https://euobserver.com/foreign/136503. Accessed 24 Mar 2018

  3. Bloomberg’s Article. https://www.livemint.com/Consumer/LKK03QAnhO05wWdT6qCl8O/Facebooks-Journalism-Project-pledges-stronger-media-ties.html. Accessed 06 Apr 2018

  4. Business Insider’s Article. http://www.businessinsider.com/google-jigsaw-perspective-tool-exposes-online-harassment-trolling-2017-2?IR=T. Accessed 28 Mar 2018

  5. The Guardian’s Article. https://www.theguardian.com/technology/2017/feb/08/wikipedia-bans-daily-mail-as-unreliable-source-for-website. Accessed 06 Apr 2018

  6. DW’s Article. http://www.dw.com/en/germany-plans-creation-of-center-of-defense-against-fake-news-report-says/a-36887455. Accessed 25 Mar 2018

  7. BBC’s Article. http://www.bbc.com/news/technology-42510868. Accessed 02 Apr 2018

  8. Rubin, V.L., Chen, Y., Conroy, N.J.: Deception detection for news: three types of fakes. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–4 (2015)

    Article  Google Scholar 

  9. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management Journal, pp. 797–806 (2017)

    Google Scholar 

  10. Rubin, V.L., Conroy, N.J., Chen, Y., Cornwell, S.: Fake news or truth? Using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection, pp. 7–17 (2016)

    Google Scholar 

  11. Conroy, N.J., Rubin, V.L., Chen, Y.: Automatic deception detection: methods for finding fake news. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–4 (2015)

    Article  Google Scholar 

  12. Chen, C., Wu, K., Srinivasan, V., Zhang, X.: Battling the internet water army: detection of hidden paid posters. In: Proceedings of 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 116–120. IEEE (2013)

    Google Scholar 

  13. Wang, W.Y.: Liar, Liar Pants on Fire: A New Benchmark Dataset for Fake News Detection. arXiv preprint arXiv:1705.00648 (2017)

  14. Galán-García, P., Puerta, J.G.D.L., Gómez, C.L., Santos, I., Bringas, P.G.: Supervised machine learning for the detection of troll profiles in twitter social network: application to a real case of cyberbullying. Logic J. IGPL 24(1), 42–53 (2016)

    MathSciNet  Google Scholar 

  15. Choraś, M., Kozik, R., Renk, R., Hołubowicz, W.: The concept of applying lifelong learning paradigm to cybersecurity. In: Huang, D.-S., Hussain, A., Han, K., Gromiha, M.M. (eds.) ICIC 2017. LNCS, vol. 10363, pp. 663–671. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63315-2_58

    Chapter  Google Scholar 

  16. Huynh, T.K., Huynh, K.V., Le-Tien, T., Nguyen S.C.: A survey on image forgery detection techniques. In: Proceedings of 2015 IEEE RIVF International Conference on Computing & Communication Technologies-Research, Innovation, and Vision for the Future (RIVF), pp. 71–76. IEEE (2015)

    Google Scholar 

  17. Farid, H.: Image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009)

    Article  Google Scholar 

  18. Amnesty International’s Report. http://www.amnestyusa.org/sites/default/custom-scripts/citizenevidence/. Accessed 12 Mar 2018

  19. CASIA Database. http://forensics.idealtest.org/casiav1/. Accessed 02 Apr 2018

  20. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Giełczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choraś, M., Giełczyk, A., Demestichas, K., Puchalski, D., Kozik, R. (2018). Pattern Recognition Solutions for Fake News Detection. In: Saeed, K., Homenda, W. (eds) Computer Information Systems and Industrial Management. CISIM 2018. Lecture Notes in Computer Science(), vol 11127. Springer, Cham. https://doi.org/10.1007/978-3-319-99954-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99954-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99953-1

  • Online ISBN: 978-3-319-99954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics