Nothing Special   »   [go: up one dir, main page]

Skip to main content

DMA Optimal Layout for Protection of Water Distribution Networks from Malicious Attack

  • Conference paper
  • First Online:
Critical Information Infrastructures Security (CRITIS 2017)

Abstract

Water distribution networks (WDNs) are among the most important civil networks, because they deliver drinking and industrial water to metropolitan areas, supporting economic prosperity and quality of life. Therefore, they constitute critical infrastructures (CIs) as systems whose operability are of crucial importance to ensure social survival and welfare. In the last years, extreme natural events and intentional malicious attacks have shown that global safeguard of systems cannot be ever performed. In this regard, critical infrastructure protection (CIP) strategies should be focused both on the prevention of these events and on the procedures for the functioning recovery and damage limitation. In this paper, starting from previous works of the authors, the impact of an intentional contamination attack to water distribution network and a possible strategy to mitigate the user risk have been studied, simulating the introduction of potassium cyanide with a backflow attack into water system. As protection technique, the water network partitioning (WNP) has been adopted in order to improve the management and also to reduce the extent of damage showing a dual use-value. WNP reveals to be an efficient way to protect water networks from malicious contamination, through the closure of gate valves by a remote control system creating semi-independent District Meter Areas (DMAs). The study also investigates the possibility to identify a priori the most critical point of a water distribution network for the malicious attack through a novel procedure based on topological metric. The methodology, tested on a real medium size water network in Italy, shows very interesting results in terms of mitigation risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bashan, A., Berezin, Y., Buldyrev, S.V., Havlin, S.: The extreme vulnerability of interdependent spatially embedded networks. Nat. Phys. 9(10), 667–672 (2013)

    Article  Google Scholar 

  2. Edwards, M.: Critical Infrastructure Protection. IOS Press, Amsterdam (2014)

    Google Scholar 

  3. Eusgeld, I., Kroger, W., Sansavini, G., Schlapfer, M., Zio, E.: The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures. Reliab. Syst. Saf. 94(5), 954–963 (2009)

    Article  Google Scholar 

  4. Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., Santonastaso, G.F.: Water supply network partitioning based on weighted spectral clustering. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) Complex Networks & Their Applications V. SCI, vol. 693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50901-3_63

    Chapter  Google Scholar 

  5. Facchini, A., et al.: Complexity science for sustainable smart water grids. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 26–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_3

    Chapter  Google Scholar 

  6. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  7. Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., Santonastaso, G.F.: Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Sci. Technol.: Water Supply (2017). https://doi.org/10.2166/ws.2017.124

  8. Carvalho, R., Buzna, L., Bono, F., Gutierrez, E., Just, W., Arrowsmith, D.: Robustness of trans-European gas networks. Phys. Rev. E 80, 016106 (2009)

    Article  Google Scholar 

  9. Newman, M.E.J.: The structure and function of networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  10. US EPA 2009: National Primary Drinking Water Regulations. US Environmental Protection Agency, Washington, DC. EPA 816-F-09-004

    Google Scholar 

  11. Nilsson, K.A., Buchberger, S.G., Clark, R.M.: Simulating exposures to deliberate intrusions into water distribution systems. J. Water Resour. Plann. Manag. 131(3), 228–236 (2005)

    Article  Google Scholar 

  12. Clark, R.M., Chandrasekaran, L., Buchberger, S.B.: Modeling the propagation of waterborne disease in water distribution systems: results from a case study. In: 8th WSDA Symposium, Cincinnati, OH (2006)

    Google Scholar 

  13. Di Nardo, A., Di Natale, M., Musmarra, D., Santonastaso, G.F., Tzatchkov, V., Alcocer-Yamanaka, V.H.: Dual-use value of network partitioning for water system management and protection from malicious contamination. J. Hydroinform. 17, 361–376 (2015)

    Article  Google Scholar 

  14. Kroll, D.: Protecting world water supplies against backflow attacks. Water Wastewater Int. 25(2), 4 (2010)

    Google Scholar 

  15. US EPA 2003: Response Protocol Toolbox: Planning for and Responding to Drinking Water Contamination Threats and Incidents

    Google Scholar 

  16. Hall, J., et al.: On-line water quality parameters as indicators of distribution system contamination. J. Am. Water Works Assoc. 99(1), 66–67 (2007)

    Article  Google Scholar 

  17. Ostfeld, A.: The battle of water sensor networks (BWSN): a design challenge for engineers and algorithms. J. Water Resour. Plann. Manag. 134(6), 556–568 (2008)

    Article  Google Scholar 

  18. Kroll, D., King, K.: Methods for evaluating water distribution network early warning systems. J. Am. Water Works Assoc. 102(1), 79–89 (2010)

    Article  Google Scholar 

  19. Grayman, W.M., Murray, R., Savic, D.A.: Effects of redesign of water systems for security and water quality actors. In: Starrett, S. (ed.) Proceedings of the World Environmental and Water Resources Congress, Kansas City (2009)

    Google Scholar 

  20. WRC/WSA/WCA: Engineering and Operations Committee. Managing Leakage: UK Water Industry Managing Leakage. Rep. A-J. WRC/WSA/WCA, London (1994)

    Google Scholar 

  21. Di Nardo, A., Di Natale, M.: A heuristic design support methodology based on graph theory for district metering of water supply networks. Eng. Optim. 43(2), 193–211 (2011)

    Article  Google Scholar 

  22. Perelman, L.S., Allen, M., Preis, A., Iqbal, M., Whittle, A.J.: Automated sub-zoning of water distribution systems. Environ. Model Softw. 65, 1–14 (2015)

    Article  Google Scholar 

  23. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23, 298 (1973)

    MATH  Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  25. Di Nardo, A., Di Natale, M., Guida, M., Musmarra, D.: Water network protection from intentional contamination by sectorization. Water Resour. Manag. 27(6), 1837–1850 (2013)

    Article  Google Scholar 

  26. Bonacich, P.: A technique for analyzing overlapping membership. In Costner, H. (ed.) Sociological Methodology, pp. 176–185. Jossey-Bass, San Francisco (1972)

    Google Scholar 

  27. Rossman, L.A.: EPANET2 Users Manual. US EPA, Cincinnati, Ohio (2000)

    Google Scholar 

  28. Di Nardo, A., Di Natale, M., Santonastaso, G.F., Venticinque, S.: An automated tool for smart water network partitioning. Water Resour. Manag. 27(13), 4493–4508 (2013)

    Article  Google Scholar 

  29. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  30. Di Nardo, A., Di Natale, M., Giudicianni, C., Santonastaso, G.F., Tzatchkov, V., Varela, J.M.R., Yamanaka, V.H.A.: Water supply network partitioning based on simultaneous cost and energy optimization. Procedia Eng. 162, 238–245 (2016)

    Article  Google Scholar 

  31. Todini, E.: Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2(2), 115–122 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Giudicianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chianese, S., Di Nardo, A., Di Natale, M., Giudicianni, C., Musmarra, D., Santonastaso, G.F. (2018). DMA Optimal Layout for Protection of Water Distribution Networks from Malicious Attack. In: D'Agostino, G., Scala, A. (eds) Critical Information Infrastructures Security. CRITIS 2017. Lecture Notes in Computer Science(), vol 10707. Springer, Cham. https://doi.org/10.1007/978-3-319-99843-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99843-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99842-8

  • Online ISBN: 978-3-319-99843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics