Abstract
The modern mobile machinery has advanced on-board computer systems. They may execute various types of applications observing machine operation based on sensor data (such as feedback generators for more efficient operation). Measurement data utilisation requires preprocessing before use (e.g. outlier detection or dataset categorisation). As more and more data is collected from machine operation, better data preprocessing knowledge may be generated with data analyses. To enable the repeated deployment of that knowledge to machines in operation, information management must be considered; this is particularly challenging in geographically distributed fleets. This study considers both data refinement management and the refinement workflow required for data utilisation. The role of machine learning in data refinement knowledge generation is also considered. A functional cloud-managed data refinement component prototype has been implemented, and an experiment has been made with forestry data. The results indicate that the concept has considerable business potential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahga, A., Madisetti, V.K.: Analyzing massive machine maintenance data in a computing cloud. IEEE Trans. Parallel Distrib. Syst. 23(10), 1831–1843 (2012). https://doi.org/10.1109/TPDS.2011.306
Banerjee, T.P., Das, S.: Multi-sensor data fusion using support vector machine for motor fault detection. Inf. Sci. 217, 96–107 (2012). https://doi.org/10.1016/j.ins.2012.06.016
Basir, O., Yuan, X.: Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory. Inf. Fusion 8(4), 379–386 (2007). https://doi.org/10.1016/j.inffus.2005.07.003
Choudhury, T., et al.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008). https://doi.org/10.1109/MPRV.2008.39
Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Sig. Process. 7(34), 197–387 (2014). https://doi.org/10.1561/2000000039
Duan, L., Xu, L.D.: Business intelligence for enterprise systems: a survey. IEEE Trans. Ind. Inform. 8(3), 679–687 (2012). https://doi.org/10.1109/TII.2012.2188804
Favela, J., et al.: Activity recognition for context-aware hospital applications: issues and opportunities for the deployment of pervasive networks. Mob. Netw. Appl. 12(2–3), 155–171 (2007). https://doi.org/10.1007/s11036-007-0013-5
Filev, D., Lu, J., Hrovat, D.: Future mobility: integrating vehicle control with cloud computing. Mech. Eng. 135(3), S18–S24 (2013)
Fountas, S., Sorensen, C., Tsiropoulos, Z., Cavalaris, C., Liakos, V., Gemtos, T.: Farm machinery management information system. Comput. Electron. Agric. 110, 131–138 (2015). https://doi.org/10.1016/j.compag.2014.11.011
Golparvar-Fard, M., Heydarian, A., Niebles, J.C.: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers. Adv. Eng. Inform. 27(4), 652–663 (2013). https://doi.org/10.1016/j.aei.2013.09.001
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1007/s10462-004-4304-y
Hou, L., Bergmann, N.: Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Trans. Instrum. Meas. 61(10), 2787–2798 (2012). https://doi.org/10.1109/TIM.2012.2200817
Iftikhar, N., Pedersen, T.B.: Flexible exchange of farming device data. Comput. Electron. Agric. 75(1), 52–63 (2011). https://doi.org/10.1016/j.compag.2010.09.010
Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Sig. Process. 20(7), 1483–1510 (2006). https://doi.org/10.1016/j.ymssp.2005.09.012
Kannisto, P., Hästbacka, D.: Enabling centralised management of local sensor data refinement in machine fleets. In: Proceedings of the 8th International Conference on Knowledge Management and Information Sharing, vol. 3, pp. 21–30 (2016). https://doi.org/10.5220/0006045600210030
Kannisto, P., Hästbacka, D., Kuikka, S.: System architecture for mastering machine parameter optimisation. Comput. Ind. 85, 39–47 (2017). https://doi.org/10.1016/j.compind.2016.12.006
Kannisto, P., Hästbacka, D., Palmroth, L., Kuikka, S.: Distributed knowledge management architecture and rule based reasoning for mobile machine operator performance assessment. In: Proceedings of the 16th International Conference on Enterprise Information Systems, pp. 440–449 (2014). https://doi.org/10.5220/0004870004400449
Khot, L.R., Tang, L., Blackmore, S., Nørremark, M.: Navigational context recognition for an autonomous robot in a simulated tree plantation. Trans. ASABE 49(5), 1579–1588 (2006)
LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21–31 (2011)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
Lu, B., Gungor, V.: Online and remote motor energy monitoring and fault diagnostics using wireless sensor networks. IEEE Trans. Ind. Electron. 56(11), 4651–4659 (2009). https://doi.org/10.1109/TIE.2009.2028349
March, S.T., Smith, G.F.: Design and natural science research on information technology. Decis. Support. Syst. 15(4), 251–266 (1995). https://doi.org/10.1016/0167-9236(94)00041-2
Osborne, J.W., Overbay, A.: The power of outliers (and why researchers should always check for them). Pract. Assess. Res. Eval. 9(6), 1–12 (2004)
Palmroth, L.: Performance monitoring and operator assistance systems in mobile machines. Ph.D. thesis, Department of Automation Science and Engineering, Tampere University of Technology, Tampere, Finland (2011)
Peets, S., Mouazen, A.M., Blackburn, K., Kuang, B., Wiebensohn, J.: Methods and procedures for automatic collection and management of data acquired from on-the-go sensors with application to on-the-go soil sensors. Comput. Electron. Agric. 81, 104–112 (2012). https://doi.org/10.1016/j.compag.2011.11.011
Steinberger, G., Rothmund, M., Auernhammer, H.: Mobile farm equipment as a data source in an agricultural service architecture. Comput. Electron. Agric. 65(2), 238–246 (2009). https://doi.org/10.1016/j.compag.2008.10.005
Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P., Tröster, G.: Wearable activity tracking in car manufacturing. IEEE Pervasive Comput. 7(2), 42–50 (2008). https://doi.org/10.1109/MPRV.2008.40
Tao, F., Zhang, L., Liu, Y., Cheng, Y., Wang, L., Xu, X.: Manufacturing service management in cloud manufacturing: overview and future research directions. J. Manuf. Sci. Eng. 137(4), 040912 (2015). https://doi.org/10.1115/1.4030510
Väyrynen, T., Peltokangas, S., Anttila, E., Vilkko, M.: Data-driven approach for analysis of performance indices in mobile work machines. In: Data Analytics 2015, The Fourth International Conference on Data Analytics, pp. 81–86 (2015)
Wan, J., Zhang, D., Zhao, S., Yang, L.T., Lloret, J.: Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun. Mag. 52(8), 106–113 (2014). https://doi.org/10.1109/MCOM.2014.6871677
Whaiduzzaman, M., Sookhak, M., Gani, A., Buyya, R.: A survey on vehicular cloud computing. J. Netw. Comput. Appl. 40, 325–344 (2014). https://doi.org/10.1016/j.jnca.2013.08.004
Wu, D., Rosen, D.W., Wang, L., Schaefer, D.: Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Comput.-Aided Des. 59, 1–14 (2015). https://doi.org/10.1016/j.cad.2014.07.006
Yang, B.S., Kim, K.J.: Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mech. Syst. Signal Process. 20(2), 403–420 (2006). https://doi.org/10.1016/j.ymssp.2004.10.010
Acknowledgments
This work was made as a part of the D2I (Data to Intelligence) project funded by Tekes (the Finnish Funding Agency for Innovation). The authors would like to express their sincere gratitude to the project partners and participant companies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kannisto, P., Hästbacka, D. (2019). Cloud-Based Management of Machine Learning Generated Knowledge for Fleet Data Refinement. In: Fred, A., Dietz, J., Aveiro, D., Liu, K., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2016. Communications in Computer and Information Science, vol 914. Springer, Cham. https://doi.org/10.1007/978-3-319-99701-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-99701-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99700-1
Online ISBN: 978-3-319-99701-8
eBook Packages: Computer ScienceComputer Science (R0)