Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Sequential Three-Way Approach to Constructing a Co-association Matrix in Consensus Clustering

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11103))

Included in the following conference series:

Abstract

The main task in consensus clustering is to produce an optimal output clustering based on a set of input clusterings. The co-association matrix based consensus clustering methods are easy to understand and implement. However, they usually have high computational cost with big datasets, which restricts their applications. We propose a sequential three-way approach to constructing the co-association matrix progressively in multiple stages. In each stage, based on a set of input clusterings, we evaluate how likely two data points are associated and accordingly, divide a set of data-point pairs into three disjoint positive, negative and boundary regions. A data-point pair in the positive region is associated with a definite decision of clustering the two data points together. A pair in the negative region is associated with a definite decision of separating the two data points into different clusters. For a pair in the boundary region, we do not have sufficient information to make a definite decision. The decision on such a pair is deferred into the next stage where more input clusterings will be involved. By making quick decisions on early stages, the overall computational cost of constructing the matrix and the consensus clustering may be reduced.

This work is partially supported by a Discovery Grant from NSERC, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets/Iris.

  2. 2.

    https://www.rdocumentation.org/packages/diceR/versions/0.3.2/topics/hgsc.

References

  1. Chiu, D.S., Talhouk, A.: diceR: an R package for class discovery using an ensemble driven approach. BMC Bioinform. 19, 11–18 (2018)

    Article  Google Scholar 

  2. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Royal Stat. Soc. Ser. B 39, 1–38 (1977)

    MATH  Google Scholar 

  3. Deng, X.F., Yao, Y.Y.: An information-theoretic interpretation of thresholds in probabilistic rough sets. In: Li, T., et al. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 369–378. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31900-6_46

  4. Donath, W.E., Hoffman, A.J.: Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. IBM Tech. Discl. Bull. 15, 938–944 (1972)

    Google Scholar 

  5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., et al. (eds.) KDD 1996, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  6. Fred, A.: Finding consistent clusters in data partitions. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48219-9_31

    Chapter  Google Scholar 

  7. Fred, A., Jain, A.K.: Combining multiple clustering using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 835–850 (2005)

    Article  Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  9. Herbert, J.P., Yao, J.T.: Game-theoretic rough sets. Fundamenta Informaticae 108, 267–286 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  11. Iam-on, N., Boongoen, T., Garrett, S.: LCE: a link-based cluster ensemble method for improved gene expression data analysis. Bioinformatics 26, 1513–1519 (2010)

    Article  Google Scholar 

  12. Iam-on, N., Boongoen, T., Garrett, S.: Refining pairwise similarity matrix for cluster ensemble problem with cluster relations. In: Jean-Fran, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS, vol. 5255, pp. 222–233. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88411-8_22

    Chapter  Google Scholar 

  13. Li, Y., Yu, J., Hao, P., Li, Z.: Clustering ensembles based on normalized edges. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS, vol. 4426, pp. 664–671. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71701-0_71

    Chapter  Google Scholar 

  14. Li, H.X., Zhang, L.B., Huang, B., Zhou, X.Z.: Sequential three-way decision and granulation for cost-sensitive face recognition. Knowl. Based Syst. 91, 241–251 (2016)

    Article  Google Scholar 

  15. Li, H.X., Zhang, L.B., Zhou, X.Z., Huang, B.: Cost-sensitive sequential three-way decision modeling using a deep neural network. Int. J. Approx. Reason. 85, 68–78 (2017)

    Article  MathSciNet  Google Scholar 

  16. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)

    Google Scholar 

  17. Meila, M.: Comparing clusterings - an information based distance. J. Multivar. Anal. 98, 873–895 (2007)

    Article  MathSciNet  Google Scholar 

  18. Sokal, R., Michener, C.: A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38, 1409–1438 (1958)

    Google Scholar 

  19. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. J. Pattern Recogn. Artif. Intell. 25, 337–372 (2011)

    Article  MathSciNet  Google Scholar 

  21. Vega-Pons, S., Ruiz-Shulcloper, J.: Clustering ensemble method for heterogeneous partitions. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 481–488. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10268-4_56

    Chapter  Google Scholar 

  22. Wang, X., Yang, C., Zhou, J.: Clustering aggregation by probability accumulation. Pattern Recogn. 42, 668–675 (2009)

    Article  Google Scholar 

  23. Yao, Y.Y.: An outline of a theory of three-way decisions. In: Yao, J.T., et al. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32115-3_1

  24. Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)

    Article  Google Scholar 

  25. Yao, Y.Y., Deng, X.F.: Sequential three-way decisions with probabilistic rough sets. In: Wang, Y., et al. (eds.) ICCI-CC 2011, pp. 120–125 (2011)

    Google Scholar 

  26. Yao, Y.Y., Hu, M., Deng, X.F.: Modes of sequential three-way classifications. In: Medina, J., Ojeda-Aciego, M., Verdegay, J.L., Pelta, D.A., Cabrera, I.P., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2018. CCIS, vol. 854, pp. 724–735. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-3_59

  27. Yao, Y.Y., Lingras, P., Wang, R., Miao, D.: Interval set cluster analysis: a re-formulation. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 398–405. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10646-0_48

  28. Yu, H.: A framework of three-way cluster analysis. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS, vol. 10314, pp. 300–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_22

    Chapter  Google Scholar 

  29. Yu, H., Wang, X., Wang, G.: A semi-supervised three-way clustering framework for multi-view data. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS, vol. 10314, pp. 313–325. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_23

    Chapter  Google Scholar 

  30. Yu, H., Zhang, H.: A three-way decision clustering approach for high dimensional data. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS, vol. 9920, pp. 229–239. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47160-0_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, M., Deng, X., Yao, Y. (2018). A Sequential Three-Way Approach to Constructing a Co-association Matrix in Consensus Clustering. In: Nguyen, H., Ha, QT., Li, T., Przybyła-Kasperek, M. (eds) Rough Sets. IJCRS 2018. Lecture Notes in Computer Science(), vol 11103. Springer, Cham. https://doi.org/10.1007/978-3-319-99368-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99368-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99367-6

  • Online ISBN: 978-3-319-99368-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics