Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Decomposition-Based Evolutionary Algorithm for Multi-modal Multi-objective Optimization

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

This paper proposes a novel decomposition-based evolutionary algorithm for multi-modal multi-objective optimization, which is the problem of locating as many as possible (almost) equivalent Pareto optimal solutions. In the proposed method, two or more individuals can be assigned to each decomposed subproblem to maintain the diversity of the population in the solution space. More precisely, a child is assigned to a subproblem whose weight vector is closest to its objective vector, in terms of perpendicular distance. If the child is close to one of individuals that have already been assigned to the subproblem in the solution space, the replacement selection is performed based on their scalarizing function values. Otherwise, the child is newly assigned to the subproblem, regardless of its quality. The effectiveness of the proposed method is evaluated on seven problems. Results show that the proposed algorithm is capable of finding multiple equivalent Pareto optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  2. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE TEVC 6(2), 182–197 (2002)

    Google Scholar 

  3. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. EJOR 185(3), 1062–1087 (2008)

    Article  MathSciNet  Google Scholar 

  4. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  5. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-objective decision making. In: GECCO, pp. 721–728 (2011)

    Google Scholar 

  6. Kramer, O., Danielsiek, H.: DBSCAN-based multi-objective niching to approximate equivalent pareto-subsets. In: GECCO, pp. 503–510 (2010)

    Google Scholar 

  7. Kudo, F., Yoshikawa, T., Furuhashi, T.: A study on analysis of design variables in Pareto solutions for conceptual design optimization problem of hybrid rocket engine. In: IEEE CEC, pp. 2558–2562 (2011)

    Google Scholar 

  8. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.P.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE TEVC 21(4), 518–538 (2017)

    Google Scholar 

  9. Liang, J.J., Yue, C.T., Qu, B.Y.: Multimodal multi-objective optimization: a preliminary study. In: IEEE CEC, pp. 2454–2461 (2016)

    Google Scholar 

  10. Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 513–522. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_52

    Chapter  Google Scholar 

  11. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve equivalent pareto subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_7

    Chapter  Google Scholar 

  12. Schütze, O., Vasile, M., Coello, C.A.C.: Computing the set of epsilon-efficient solutions in multiobjective space mission design. JACIC 8(3), 53–70 (2011)

    Article  Google Scholar 

  13. Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing decision space diversity in evolutionary multiobjective algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_12

    Chapter  Google Scholar 

  14. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE TEVC 21(3), 440–462 (2017)

    Google Scholar 

  15. Ulrich, T., Bader, J., Zitzler, E.: Integrating decision space diversity into hypervolume-based multiobjective search. In: GECCO, pp. 455–462 (2010)

    Google Scholar 

  16. Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE TEVC 20(2), 180–198 (2016)

    Google Scholar 

  17. Yue, C., Qu, B., Liang, J.: A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE TEVC (2017, in press)

    Google Scholar 

  18. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE TEVC 11(6), 712–731 (2007)

    Google Scholar 

  19. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE TEVC 13(5), 1167–1189 (2009)

    Google Scholar 

  20. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE TEVC 7(2), 117–132 (2003)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Innovation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanabe, R., Ishibuchi, H. (2018). A Decomposition-Based Evolutionary Algorithm for Multi-modal Multi-objective Optimization. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics