Abstract
New and compelling regulations (e.g., the GDPR in Europe) impose tremendous pressure on organizations, in order to adhere to standard procedures, processes, and practices. The field of conformance checking aims to quantify the extent to which the execution of a process, captured within recorded corresponding event data, conforms to a given reference process model. Existing techniques assume a post-mortem scenario, i.e. they detect deviations based on complete executions of the process. This limits their applicability in an online setting. In such context, we aim to detect deviations online (i.e., in-vivo), in order to provide recovery possibilities before the execution of a process instance is completed. Also, current techniques assume cases to start from the initial stage of the process, whereas this assumption is not feasible in online settings. In this paper, we present a generic framework for online conformance checking, in which the underlying process is represented in terms of behavioural patterns and no assumption on the starting point of cases is needed. We instantiate the framework on the basis of Petri nets, with an accompanying new unfolding technique. The approach is implemented in the process mining tool ProM, and evaluated by means of several experiments including a stress-test and a comparison with a similar technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
If \(\textsf {obs}\) has no key c, \(\textsf {obs}(c)\) returns the empty set. If \(\textsf {inc}\) has no key c then \(\textsf {inc}(c)\) returns 0.
- 3.
\(P_{\min }(b)\) and \(P_{\max }(b)\) refer to the min./max. number of distinct patterns to be seen before b.
- 4.
In general, not all Petri nets can be reversed for computing the minimal number of relations to reach the end. Hence, for computing confidence, we assume in the realization of the framework presented in Sect. 6 a proper subclass, i.e., sound workflow nets.
- 5.
- 6.
Models and streams available at https://doi.org/10.5281/zenodo.1194057.
- 7.
This limitation only affects Sect. 6: it is possible to manually define the behavioural patterns.
References
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische Universiteit Eindhoven (2014)
vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B., Vanthienen, J.: Event-based real-time decomposed conformance analysis. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 345–363. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_20
Burattin, A., Carmona, J.: A framework for online conformance checking. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0_12
Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online discovery of declarative process models from event streams. IEEE TSC 8(6), 833–846 (2015)
Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow discovery from event streams. In: Proceedings of the IEEE CEC, pp. 2420–2427 (2014)
Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)
van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and observed behavior: a compromise between computation complexity and quality. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94–109. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_7
Jouck, T., Depaire, B.: PTandLogGenerator: a generator for artificial event data. In: Proceedings of the BPM Demo Track, pp. 23–27 (2016)
Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings. Acta Informatica 40(2), 95–118 (2003)
Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance monitoring in business processes: functionalities, application, and tool-support. Inf. Syst. 54, 209–234 (2015)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)
McMillan, K.L., Probst, D.K.: A technique of state space search based on unfolding. Formal Methods Syst. Des. 6(1), 45–65 (1995)
Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)
Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on behavioral profiles. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5_1
Song, M.: Organizational mining in business process management. Ph.D. thesis, Pohang University of Science and Technology, Pohang, South Korea (2006)
Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_12
Taymouri, F., Carmona, J.: Model and event log reductions to boost the computation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA 2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74161-1_1
Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17722-4_5
Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)
van Zelst, S.J., Bolt, A., van Dongen, B.F.: Tuning alignment computation: an experimental evaluation. In: Proceedings of ATAED, pp. 6–20 (2017)
van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.: Online conformance checking: relating event streams to process models using prefix-alignments. Int. J. Data Sci. Anal. (2017). https://doi.org/10.1007/s41060-017-0078-6
Acknowledgements
This work has been partially supported by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Burattin, A., van Zelst, S.J., Armas-Cervantes, A., van Dongen, B.F., Carmona, J. (2018). Online Conformance Checking Using Behavioural Patterns. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds) Business Process Management. BPM 2018. Lecture Notes in Computer Science(), vol 11080. Springer, Cham. https://doi.org/10.1007/978-3-319-98648-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-98648-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98647-0
Online ISBN: 978-3-319-98648-7
eBook Packages: Computer ScienceComputer Science (R0)