Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weighted Softmax Loss for Face Recognition via Cosine Distance

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10996))

Included in the following conference series:

Abstract

Softmax loss is commonly used to train convolutional neural networks (CNNs), but it treats all samples equally. Focal loss focus on training hard samples and takes the probability as the measurement of whether the sample is easy or hard one. In this paper, we use cosine distance of features and the corresponding centers as weight and propose weighted softmax loss (called C-Softmax). Unlike focal loss, we give greater weight to easy samples. Experiment results show that the proposed C-Softmax loss can train many well known models like ResNet, ResNeXt, DenseNet and Inception V3, and the performance of the proposed loss is better than softmax loss and focal loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  2. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  3. Hadsell, R., Chopra, S., Lecun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1735–1742 (2006)

    Google Scholar 

  4. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML, pp. 507–516 (2016)

    Google Scholar 

  5. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  6. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. arXiv preprint arXiv:1708 (2017)

  7. Liu, Y., Li, H., Wang, X.: Rethinking feature discrimination and polymerization for large-scale recognition. arXiv preprint arXiv:1710.00870 (2017)

  8. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: L2 hypersphere embedding for face verification. arXiv preprint arXiv:1704.06369 (2017)

  9. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  10. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report, University of Massachusetts (2007)

    Google Scholar 

  11. Paszke, A., Gross, S., Chintala, S., Chanan, G.: PyTorch: tensors and dynamic neural networks in Python with strong GPU acceleration (2017)

    Google Scholar 

  12. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23, 1499–1503 (2016)

    Article  Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  14. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  16. Wang, F., Liu, W., Liu, H., Cheng, J.: Additive margin softmax for face verification. arXiv preprint arXiv:1801.05599 (2018)

  17. Kemelmachershlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)

    Google Scholar 

  18. Huang, G.B., Learned-Miller, E.: Labeled faces in the wild: updates and new reporting procedures. Technical report, Department of Computer Science, University of Massachusetts Amherst, Amherst (2014)

    Google Scholar 

  19. Liao, S., Lei, Z., Yi, D., Li, S.Z.: A benchmark study of large-scale unconstrained face recognition. In: 2014 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8 (2014)

    Google Scholar 

  20. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  21. Hu, W., Huang, Y., Zhang, F., Li, R., Li, W., Yuan, G.: SeqFace: make full use of sequence information for face recognition. arXiv preprint arXiv:1803.06524 (2018)

  22. Deng, J., Guo, J., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. arXiv preprint arXiv:1801.07698 (2018)

  23. Wan, W., Zhong, Y., Li, T., Chen, J.: Rethinking feature distribution for loss functions in image classification. arXiv preprint arXiv:1803.02988 (2018)

  24. Zheng, Y., Pal, D.K., Savvides, M.: Ring loss: convex feature normalization for face recognition. arXiv preprint arXiv:1803.00130 (2018)

  25. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. arXiv preprint arXiv:1801.09414 (2018)

  26. Liu, J., Deng, Y., Bai, T., Wei, Z., Huang, C.: Targeting ultimate accuracy: face recognition via deep embedding. arXiv preprint arXiv:1506.07310 (2015)

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2015)

    Google Scholar 

  28. Huang, G., Liu, Z., Weinberger, K.Q., Laurens, V.D.M.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1 (2017)

    Google Scholar 

  29. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Wang, X., He, Z. (2018). Weighted Softmax Loss for Face Recognition via Cosine Distance. In: Zhou, J., et al. Biometric Recognition. CCBR 2018. Lecture Notes in Computer Science(), vol 10996. Springer, Cham. https://doi.org/10.1007/978-3-319-97909-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97909-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97908-3

  • Online ISBN: 978-3-319-97909-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics