Abstract
Recently, deep neural networks based hashing methods have greatly improved the image retrieval performance by simultaneously learning feature representations and binary hash functions. Most deep hashing methods utilize supervision information from semantic labels to preserve the distance similarity within local structures, however, the global distribution is ignored. We propose a novel deep supervised hashing method which aims to minimize the information loss during low-dimensional embedding process. More specifically, we use Kullback-Leibler divergences to constrain the compact codes having a similar distribution with the original images. Experimental results have shown that our method outperforms current stat-of-the-art methods on benchmark datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, X., Yan, C., Ren, P., Bai, L., Zhou, J.: Discriminative sparse neighbor coding. Multimed. Tools Appl. 75(7), 4013–4037 (2016)
Bai, X., Yan, C., Yang, H., Bai, L., Zhou, J., Hancock, E.R.: Adaptive hash retrieval with kernel based similarity. Pattern Recognit. 75, 136–148 (2018)
Bai, X., Yang, H., Zhou, J., Ren, P., Cheng, J.: Data-dependent hashing based on p-stable distribution. IEEE Trans. Image Process. 23(12), 5033–5046 (2014)
Cao, Y., Long, M., Wang, J., Zhu, H., Wen, Q.: Deep quantization network for efficient image retrieval. In: AAAI, pp. 3457–3463 (2016)
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, p. 48. ACM (2009)
Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing. VLDB 99, 518–529 (1999)
Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. arXiv preprint arXiv:1504.03410 (2015)
Li, Q., Sun, Z., He, R., Tan, T.: Deep supervised discrete hashing. In: Advances in Neural Information Processing Systems, pp. 2479–2488 (2017)
Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. arXiv preprint arXiv:1511.03855 (2015)
Lin, G., Shen, C., Shi, Q., Van den Hengel, A., Suter, D.: Fast supervised hashing with decision trees for high-dimensional data. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1971–1978. IEEE (2014)
Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast image retrieval. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 27–35. IEEE (2015)
Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2064–2072 (2016)
Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2074–2081. IEEE (2012)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: CVPR, vol. 2, p. 5 (2015)
Wang, X., Shi, Y., Kitani, K.M.: Deep supervised hashing with triplet labels. In: Lai, S.H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 70–84. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_5
Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, pp. 1753–1760 (2009)
Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: AAAI, vol. 1, p. 2 (2014)
Yang, H., et al.: Maximum margin hashing with supervised information. Multimed. Tools Appl. 75(7), 3955–3971 (2016)
Zhang, P., Zhang, W., Li, W.J., Guo, M.: Supervised hashing with latent factor models. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 173–182. ACM (2014)
Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans. Image Process. 24(12), 4766–4779 (2015)
Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1556–1564. IEEE (2015)
Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity retrieval. In: AAAI, pp. 2415–2421 (2016)
Acknowledgement
This work was supported by the National Natural Science Foundation of China project no. 61772057, in part by Beijing Natural Science Foundation project no. 4162037, and the support funding from State Key Lab. of Software Development Environment.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X., Zhou, L., Bai, X., Hancock, E. (2018). Deep Supervised Hashing with Information Loss. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-97785-0_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97784-3
Online ISBN: 978-3-319-97785-0
eBook Packages: Computer ScienceComputer Science (R0)