Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Supervised Hashing with Information Loss

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

Recently, deep neural networks based hashing methods have greatly improved the image retrieval performance by simultaneously learning feature representations and binary hash functions. Most deep hashing methods utilize supervision information from semantic labels to preserve the distance similarity within local structures, however, the global distribution is ignored. We propose a novel deep supervised hashing method which aims to minimize the information loss during low-dimensional embedding process. More specifically, we use Kullback-Leibler divergences to constrain the compact codes having a similar distribution with the original images. Experimental results have shown that our method outperforms current stat-of-the-art methods on benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, X., Yan, C., Ren, P., Bai, L., Zhou, J.: Discriminative sparse neighbor coding. Multimed. Tools Appl. 75(7), 4013–4037 (2016)

    Article  Google Scholar 

  2. Bai, X., Yan, C., Yang, H., Bai, L., Zhou, J., Hancock, E.R.: Adaptive hash retrieval with kernel based similarity. Pattern Recognit. 75, 136–148 (2018)

    Article  Google Scholar 

  3. Bai, X., Yang, H., Zhou, J., Ren, P., Cheng, J.: Data-dependent hashing based on p-stable distribution. IEEE Trans. Image Process. 23(12), 5033–5046 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cao, Y., Long, M., Wang, J., Zhu, H., Wen, Q.: Deep quantization network for efficient image retrieval. In: AAAI, pp. 3457–3463 (2016)

    Google Scholar 

  5. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, p. 48. ACM (2009)

    Google Scholar 

  6. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing. VLDB 99, 518–529 (1999)

    Google Scholar 

  7. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  8. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  9. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. arXiv preprint arXiv:1504.03410 (2015)

  10. Li, Q., Sun, Z., He, R., Tan, T.: Deep supervised discrete hashing. In: Advances in Neural Information Processing Systems, pp. 2479–2488 (2017)

    Google Scholar 

  11. Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. arXiv preprint arXiv:1511.03855 (2015)

  12. Lin, G., Shen, C., Shi, Q., Van den Hengel, A., Suter, D.: Fast supervised hashing with decision trees for high-dimensional data. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1971–1978. IEEE (2014)

    Google Scholar 

  13. Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast image retrieval. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 27–35. IEEE (2015)

    Google Scholar 

  14. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2064–2072 (2016)

    Google Scholar 

  15. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2074–2081. IEEE (2012)

    Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  17. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: CVPR, vol. 2, p. 5 (2015)

    Google Scholar 

  18. Wang, X., Shi, Y., Kitani, K.M.: Deep supervised hashing with triplet labels. In: Lai, S.H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 70–84. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_5

    Chapter  Google Scholar 

  19. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, pp. 1753–1760 (2009)

    Google Scholar 

  20. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: AAAI, vol. 1, p. 2 (2014)

    Google Scholar 

  21. Yang, H., et al.: Maximum margin hashing with supervised information. Multimed. Tools Appl. 75(7), 3955–3971 (2016)

    Article  Google Scholar 

  22. Zhang, P., Zhang, W., Li, W.J., Guo, M.: Supervised hashing with latent factor models. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 173–182. ACM (2014)

    Google Scholar 

  23. Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans. Image Process. 24(12), 4766–4779 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1556–1564. IEEE (2015)

    Google Scholar 

  25. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity retrieval. In: AAAI, pp. 2415–2421 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China project no. 61772057, in part by Beijing Natural Science Foundation project no. 4162037, and the support funding from State Key Lab. of Software Development Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueni Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhou, L., Bai, X., Hancock, E. (2018). Deep Supervised Hashing with Information Loss. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics