Abstract
Spatially-regularized correlation filters have achieved great successes in visual object tracking, with excellent tracking accuracy and robustness to various interferences. The performance improvement mainly attributes to spatial regularization (SR), which is a powerful tool to alleviate the boundary effects of correlation filters (CF) based tracking, but on the other hand, also severely harms the efficiency. In this paper, we propose an effective fast spatial regularization model that can be learned within the joint frequency and spatial domain. Extensive experiments on OTB-100 validate the effectiveness and generality of our model in helping state-of-the-art CF trackers to achieve much faster (near 5 times) frame rate and even better tracking accuracy.
P. Zhang and Q. Guo—Both authors contributed equally to this work.
W. Feng—This work is supported by NSFC 61671325, 61572354, 61672376.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: complementary learners for real-time tracking. In: CVPR (2016)
Chen, Z., Guo, Q., Wan, L., Feng, W.: Background-suppressed correlation filters for visual tracking. In: ICME (2018)
Choi, J., Chang, H., Jeong, J., Demiris, Y., Jin, Y.: Visual tracking using attention-modulated disintegration and integration. In: CVPR (2016)
Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS (2011)
Danelljan, M., Bhat, G., Khan, F., Felsberg, M.: ECO: efficient convolution operators for tracking. In: CVPR (2017)
Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC (2014)
Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: ICCV (2015)
Danelljan, M., Robinson, A., Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: ECCV (2016)
Dollar, P.: Piotr’s computer vision matlab toolbox: histogram of oriented gradients
Feng, W., Jia, J., Liu, Z.Q.: Self-validated labeling of Markov random fields for image segmentation. IEEE TPAMI 32(10), 1871–1887 (2010)
Galoogahi, H.K., Sim, T., Lucey, S.: Correlation filters with limited boundaries. In: CVPR (2015)
Guo, Q., Feng, W., Zhou, C.: Structure-regularized compressive tracking with online data-driven sampling. IEEE TIP 26(12), 5692–5705 (2017)
Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: ICCV (2017)
Guo, Q., Sun, S., Ren, X., Dong, F., Gao, B., Feng, W.: Frequency-tuned active contour model. Neurocomputing 275, 2307–2316 (2018)
Han, R.Z., Guo, Q., Feng, W.: Content-related spatial regularization for visual object tracking. In: ICME (2018)
Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels. In: ICCV (2011)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE TPAMI (2015)
Huang, R., Feng, W., Sun, J.: Color feature reinforcement for co-saliency detection without single saliency residuals. IEEE SPL 24(5), 569–573 (2017)
Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE TIP 18(7), 1512–1523 (2009)
Knerr, S., Personnaz, L., Dreyfus, G.: Handwritten digit recognition by neural networks with single-layer training. IEEE TNN 3(6), 962–968 (1992)
Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., Nebehay, G., Porikli, F., Cehovin, L.: A novel performance evaluation methodology for single-target trackers. IEEE TPAMI 38(11), 2137–2155 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: ECCVW (2014)
Lukezic, A., Vojir, T., Cehovin, L., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: CVPR (2017)
Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: ICCV (2015)
Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: CVPR (2015)
Mathieu, M., Henaff, M., Lecun, Y.: Fast training of convolutional networks through FFTs. In: ICLR (2014)
Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: CVPR (2017)
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR (2016)
Ning, J., Yang, J., Jiang, S., Zhang, L., Yang, M.: Object tracking via dual linear structured SVM and explicit feature map. In: CVPR (2016)
Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: End-to-end representation learning for correlation filter based tracking. In: CVPR (2017)
Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: CVPR (2017)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)
Zhou, C., Guo, Q., Wan, L., Feng, W.: Selective object and context tracking. In: ICASSP (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, P., Guo, Q., Feng, W. (2018). Fast Spatially-Regularized Correlation Filters for Visual Object Tracking. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-97304-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97303-6
Online ISBN: 978-3-319-97304-3
eBook Packages: Computer ScienceComputer Science (R0)