Nothing Special   »   [go: up one dir, main page]

Skip to main content

ParallelNet: A Depth-Guided Parallel Convolutional Network for Scene Segmentation

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

Abstract

In the past few years, deep convolutional neural networks (CNN) have shown great superiority and also been the first choice in semantic segmentation. However, the pooling layers in the CNN cause the increasing loss (mainly positioning structure details) which is not favourable for segmentation. Moreover, the vast majority of previous studies only utilize the color or textural information of the image, without considering the depth information which is helpful for segmentation. In this paper, we propose a novel and effective end-to-end network for semantic segmentation namely Depth-guided Parallel Convolutional Network (ParallelNet). Compared to previous work, the contribution of our ParallelNet is that we have taken advantages of the mutual benefit and strong correlations between depth information and semantic information, which are combined to guide scene semantic segmentation. Besides, we utilise a new method to obtain the depth information of the image by calculating the correlation distance with \(\mathcal {L}_1\)-norm between left and right feature maps, thus, we just need to input the RGB images instead of RGB images and encoded 3D images in some conventional methods. Furthermore, we apply the concept of our ParallelNet to the current popular networks by exploiting the guidance of the depth information and transfer their learned representations with fine-tuning. The extensive experiments on the popular dataset Cityscape exhibit that our ParallelNet outperforms the original methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. PAMI PP(99), 2481–2495 (2017)

    Google Scholar 

  2. Chandra, S., Kokkinos, I.: Fast, exact and multi-scale inference for semantic image segmentation with deep Gaussian CRFs. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7

    Chapter  Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crfs (2014). arXiv preprint arXiv:1412.7062

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput. Sci. 4, 357–361 (2014)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs (2016). arXiv preprint arXiv:1606.00915

  6. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding (2016)

    Google Scholar 

  8. Couprie, C., Farabet, C., Najman, L., Lecun, Y.: Indoor semantic segmentation using depth information. Eprint Arxiv (2013)

    Google Scholar 

  9. Deng, Z., Todorovic, S., Jan Latecki, L.: Semantic segmentation of RGBD images with mutex constraints. In: ICPR, pp. 1733–1741 (2015)

    Google Scholar 

  10. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE T-PAMI 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  11. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23

    Chapter  Google Scholar 

  12. Hazirbas, C., Ma, L., Domokos, C., Cremers, D.: FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 213–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_14

    Chapter  Google Scholar 

  13. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: CVPR, vol. 2, pp. 807–814. IEEE (2005)

    Google Scholar 

  14. Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Geometry driven semantic labeling of indoor scenes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 679–694. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_44

    Chapter  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: multi-path refinement networks for high-resolution semantic segmentation. In: CVPR (2017)

    Google Scholar 

  17. Liu, S., Zhao, L., Li, J.: The Applications and Summary of Three Dimensional Reconstruction Based on Stereo Vision (2012)

    Google Scholar 

  18. Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: looking wider to see better. In: ICLR Workshop (2016)

    Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  20. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching. In: CVPR, pp. 5695–5703 (2016)

    Google Scholar 

  21. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. PAMI 36(11), 2227–2240 (2014)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Sánchez, A.V.D.: Advanced support vector machines and kernel methods. Neurocomputing 55(1–2), 5–20 (2003)

    Article  Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  26. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  27. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  28. Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: ICCV, pp. 1769–1776. IEEE (2013)

    Google Scholar 

  29. Wang, J., Wang, Z., Tao, D., See, S., Wang, G.: Learning common and specific features for RGB-D semantic segmentation with deconvolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 664–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_40

    Chapter  Google Scholar 

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  31. Zheng, S., et al.: Conditional random fields as recurrent neural networks, pp. 1529–1537 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Key Research and Development Plan of Jiangsu Province (BE2015162) and the Major Special Project of Core Electronic Devices, High-end Generic Chips and Basic Software (2015ZX01041101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haofeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Zhang, H. (2018). ParallelNet: A Depth-Guided Parallel Convolutional Network for Scene Segmentation. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics