Nothing Special   »   [go: up one dir, main page]

Skip to main content

Embedding Internet-of-Things in Large-Scale Socio-technical Systems: A Community-Oriented Design in Future Smart Grids

  • Chapter
  • First Online:
The Internet of Things for Smart Urban Ecosystems

Abstract

In traditional engineering, technologies are viewed as the core of the engineering design, in a physical world with a large number of diverse technological artefacts. The real world, however, also includes a huge number of social components—people, communities, institutions, regulations and everything that exists in the human mind—that have shaped and been shaped by the technological components. Smart urban ecosystems are examples of large-scale Socio-Technical Systems (STS) that rely on technologies, in particular on the Internet-of-Things (IoT), within a complex social context where the technologies are embedded. Designing applications that embed both social complexity and IoT in large-scale STS requires a Socio-Technical (ST) approach, which has not yet entered the mainstream of design practice. This chapter reviews the literature and presents our experience of adopting an ST approach to the design of a community-oriented smart grid application. It discusses the challenges, process and outcomes of this apporach, and provides a set of lessons learned derived from this experience that are also deemed relevant to the design of other smart urban ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://cordis.europa.eu/project/rcn/110429_en.html.

  2. 2.

    Two municipalities of Storo and San Lorenzo in Trento, Northwest Italy.

  3. 3.

    For example, moving peaks of electricity demand towards peaks of local energy production or, in other words, improving the self-consumption capabilities of the electric cooperatives and their associate members.

  4. 4.

    The neighbourhoods of Hammarby Sjöstad and Fårdala in the Stockholm area.

  5. 5.

    In Sweden, those who buy an apartment must join a corresponding housing cooperative that owns and maintains the estates. The members of a cooperative annually elect a board that makes energy related decisions on behalf of the members.

  6. 6.

    In Italy, participants were older and less tech-savy, living in independent, large houses; while in Sweden participants were relatively young and more tech-savy, but living in smaller apartments in residential buildings.

  7. 7.

    A study of the end-users appreciation of the engagement and participatory process in the Italian pilot sites is published in [10].

  8. 8.

    A preliminary analysis of these emerging requirements in the Italian pilots is presented in [9].

  9. 9.

    http://www.smappee.com.

  10. 10.

    http://currentcost.com.

  11. 11.

    Bostadsrättsförening or Brf in Swedish.

  12. 12.

    http://www.boverket.se/sv/byggande/energideklaration/energideklarationens-innehall-och-sammanfattning/sammanfattningen-med-energiklasser/energiklasser-fran-ag/.

  13. 13.

    For technical reasons such as households’ data transfer connections and processing time, there can be up to 2-min delay between the time of actual power measurement and the data displayed.

References

  1. L. Atzori, A. Iera, G. Morabito, From “smart objects” to “social objects”: the next evolutionary step of the internet of things. IEEE Commun. Mag. 52(1), 97–105 (2014)

    Google Scholar 

  2. G. Baxter, I. Sommerville, Socio-technical systems: from design methods to systems engineering. Interact. Comput. 23(1), 4–17 (2011)

    Article  Google Scholar 

  3. K. Bødker, F. Kensing, J. Simonsen, Participatory IT Design: Designing for Business and Workplace Realities (MIT Press, Cambridge, MA, 2004)

    Google Scholar 

  4. P.W. Bots, Design in socio-technical system development: three angles in a common framework. J. Design Res. 5(3), 382–396 (2007)

    Article  Google Scholar 

  5. G.D. Brewer, The challenges of interdisciplinarity. Policy Sci. 32, 327–337 (1999)

    Article  Google Scholar 

  6. H. Brynjarsdottir, M. Håkansson, J. Pierce, E. Baumer, C. DiSalvo, P. Sengers, Sustainably unpersuaded: how persuasion narrows our vision of sustainability, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’12 (ACM, New York, NY, USA, 2012), pp. 947–956

    Google Scholar 

  7. H. Bulkeley, V.C. Broto, G. Edwards, Bringing climate change to the city: towards low carbon urbanism? Local Environ. 17(5), 545–551 (2012)

    Article  Google Scholar 

  8. A. Capaccioli, G. Poderi, M. Bettega, V. D’Andrea, Exploring alternative participatory budgeting approaches as means for citizens engagement: the case of energy, in 2016 IEEE International Smart Cities Conference (ISC2), pp. 1–4, Sept. 2016

    Google Scholar 

  9. A. Capaccioli, G. Poderi, M. Bettega, V. D’Andrea, Participatory infrastructuring of community energy, in Proceedings of the 14th Participatory Design Conference: Short Papers, Interactive Exhibitions, Workshops (PDC’16), vol. 2 (ACM, New York, NY, USA, 2016), pp. 9–12

    Google Scholar 

  10. A. Capaccioli, G. Poderi, M. Bettega, V. D’Andrea, Exploring participatory energy budgeting as a policy instrument to foster energy justice. Energy Policy 107, 621–630 (2017)

    Article  Google Scholar 

  11. P. Checkland, Systems Thinking, Systems Practice (Wiley, 1981)

    Google Scholar 

  12. M. da Graa Carvalho, EU energy and climate change strategy. Energy 40(1), 19–22 (2012)

    Google Scholar 

  13. H. Dick, H. Eden, G. Fischer, J. Zietz, Empowering users to become designers: using meta-design environments to enable and motivate sustainable energy decisions, in Proceedings of the 12th Participatory Design Conference: Exploratory Papers, Workshop Descriptions, Industry Cases (PDC’12), vol. 2 (ACM, New York, NY, USA, 2012), pp. 49–52

    Google Scholar 

  14. L. Fleischhacker, E. Agazzi, Chapter commentaries: the non-linearity of the development of technology and the techno-scientific system, in Right, Wrong and Science The Ethical Dimensions of the Techno-Scientific Enterprise. Monographs-in-Debate (Brill, 2004), pp. 301–310

    Google Scholar 

  15. G. Fortino, P. Trunfio (eds.), Internet of Things Based on Smart Objects: Technology, Middleware and Applications (Springer International Publishing, 2014)

    Google Scholar 

  16. E. Ganuza, G. Baiocchi, The power of ambiguity: how participatory budgeting travels the globe. J. Public Delib. 8(2) (2012)

    Google Scholar 

  17. A. Glasmeier, S. Christopherson, Thinking about smart cities. Camb. J. Reg. Econ. Soc. 8, 3–12 (2015)

    Article  Google Scholar 

  18. J. Greenbaum, K. Halskov, PD a personal statement. Commun. ACM 36(6), 47 (1993)

    Article  Google Scholar 

  19. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (iot): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  20. B. Guo, Z. Yu, X. Zhou, D. Zhang, Opportunistic iot: exploring the social side of the internet of things, in 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 925–929 (IEEE, 2012)

    Google Scholar 

  21. B. Guo, D. Zhang, Z. Wang, Z. Yu, X. Zhou, Opportunistic iot: exploring the harmonious interaction between human and the Internet of Things. J. Netw. Comput. Appl. 36(6), 1531–1539 (2013)

    Article  Google Scholar 

  22. Y.N. Harari, Sapiens: A Brief History of Humankind (Harvill Secker, 2014)

    Google Scholar 

  23. H. Hasselqvist, C. Bogdan, F. Kis, Linking data to action: designing for amateur energy management, in Proceedings of the 2016 ACM Conference on Designing Interactive Systems, pp. 473–483 (2016)

    Google Scholar 

  24. H. Hasselqvist, C. Bogdan, M. Romero, O. Shafqat, Supporting energy management as a cooperative amateur activity. CHI 2015, 1483–1488 (2015)

    Google Scholar 

  25. Y. Huang, H. Hasselqvist, G. Poderi, S. Sćepanović, F. Kis, C. Bogdan, M. Warnier, F. Brazier, Youpower: an open source platform for community-oriented smart grid user engagement, in 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6, May 2017

    Google Scholar 

  26. Y. Huang, D. Miorandi, D3.1 simulation model of integrated energy system. Technical report, EU FP7 CIVIS Project, 2014. Deliverable 3.1

    Google Scholar 

  27. Y. Huang, D. Miorandi, H. Hasselqvist, M. Warnier, S. Scepanoic, R. Eskola, D3.2 intergrated energy system. Technical report, EU FP7 CIVIS Project, 2015. Deliverable 3.2

    Google Scholar 

  28. Y. Huang, G. Poderi, L. Yishagerew, H. Hasselqvist, A. Massaro, S. Scepanovic, H. Ensing, F. Cuscito, D3.3 final field tested integrated energy system. Technical report, EU FP7 CIVIS Project, 2016. Deliverable 3.3

    Google Scholar 

  29. Y. Huang, M. Warnier, F. Brazier, D. Miorandi, Social networking for smart grid users—a preliminary modeling and simulation study, in Proceedings of 2015 IEEE 12th International Conference on Networking, Sensing and Control, pp. 438–443 (2015)

    Google Scholar 

  30. A. Kankainen, K. Vaajakallio, V. Kantola, T. Mattelmki, Storytelling Groupa co-design method for service design. Behav. Inf. Technol. 31(3), 221–230 (2012)

    Article  Google Scholar 

  31. S. Karnouskos, The cooperative internet of things enabled smart grid, in Proceedings of the 14th IEEE International Symposium on Consumer Electronics (ISCE2010), June, pp. 07–10 (2010)

    Google Scholar 

  32. A. Kollmuss, J. Agyeman, Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8(3), 239–260 (2002)

    Google Scholar 

  33. P. Kroes, P.E. Vermaas, A. Light, S.A. Moore, Chapter design in engineering and architecture: towards an integrated philosophical understanding, in Philosophy and Design: From Engineering to Architecture (Springer, Dordrecht, 2008), pp. 1–17

    Google Scholar 

  34. A.S. Lee, Mis quarterlys editorial policies and practices. MIS Q. iii–vii (2001)

    Google Scholar 

  35. C.C. Mody, Chapter 5 Small, but determined: technological determinism in nanoscience, in Nanotechnology Challenges: Implications for Philosophy, Ethics, and Society (World Scientific, 2006), pp. 95–130

    Google Scholar 

  36. I. Nikolić, Co-evolutionary method for modelling large-scale socio-technical systems evolution. PhD thesis, Delft University of Technology, 2009

    Google Scholar 

  37. H. Ning, Z. Wang, Future internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461–463 (2011)

    Google Scholar 

  38. D.A. Norman, P.J. Stappers, DesignX: complex sociotechnical systems. She Ji: J. Design Econ. Innov. 1(2), 83–106 (2015)

    Google Scholar 

  39. J. Padget, H. Riat, M. Warnier, F. Brazier, S. Natarajan, An agent-based infrastructure for energy profile capture and management, in 1st International Workshop on Agent Technologies for Energy Systems, 9th International Conference on Autonomous Agents and Multiagent Systems, Toronto, Canada, 2010

    Google Scholar 

  40. J. Pierce, E. Paulos, Beyond energy monitors: interaction, energy, and emerging energy systems, in CHI’12 (ACM, 2012), pp. 665–674

    Google Scholar 

  41. G. Poderi, M. Bettega, A. Capaccioli, V. DAndrea, Disentangling participation through time and interaction spacesthe case of IT design for energy demand management. CoDesign, 0(0), 1–15 (2017)

    Google Scholar 

  42. G.A. Putrus, E. Bentley, R. Binns, T. Jiang, D. Johnston, Smart grids: energising the future. Int. J. Environ. Stud. 70(5), 691–701 (2013)

    Article  Google Scholar 

  43. J. Rifkin, The Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the World (Palgrave Macmillan, New York, NY, USA, 2011)

    Google Scholar 

  44. R.M. Ryan, E.L. Deci, Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25(1), 54–67 (2000)

    Google Scholar 

  45. S. Sawyer, M.H. Jarrahi, Chapter 5 Sociotechnical approaches to the study of information systems, in Computing Handbook: Information systems and information technology, (Taylor & Francis, 3rd edn., 2014)

    Google Scholar 

  46. M. Schatten, Smart residential buildings as learning agent organizations in the internet of things. Bus. Syst. Res. J. 5(1), 34–46 (2014)

    Google Scholar 

  47. L. Schick, B.R. Winthereik, Innovating relations—or why smart grid is not too complex for the public. Sci. Technol. Stud. 26(3), 82–102 (2013)

    Google Scholar 

  48. P. Schultz, Chapter Knowledge, information, and household recycling: examining the knowledge-deficit model of behavior change, in New Tools for Environmental Protection: Education, Information, and Voluntary Measures (National Academy Press, Washington DC, 2002), pp. 67–82

    Google Scholar 

  49. P.W. Schultz, Strategies for promoting proenvironmental behavior—lots of tools but few instructions. Eur. Psychol. 19(2), 107–117 (2014)

    Google Scholar 

  50. D. Shin, A socio-technical framework for internet-of-things design: a human-centered design for the internet of things. Telemat. Inform. 31(4), 519–531 (2014)

    Google Scholar 

  51. Y. Sintomer, C. Herzberg, A. RCke, Participatory budgeting in Europe: potentials and challenges: participatory budgeting in Europe. Int. J. Urban Reg. Res. 32(1), 164–178 (2008)

    Google Scholar 

  52. M.R. Smith, L. Marx (eds.), Does Technology Drive History? The Dilemma of Technological Determinism (MIT Press, 1994)

    Google Scholar 

  53. B.K. Sovacool, How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 13, 202–215 (2016)

    Google Scholar 

  54. M. Tomasini, B. Mahmood, F. Zambonelli, A. Brayner, R. Menezes, On the effect of human mobility to the design of metropolitan mobile opportunistic networks of sensors. Pervasive Mob. Comput. 38, 215–232 (2017)

    Google Scholar 

  55. F. Umbach, Global energy security and the implications for the EU. Energy Policy 38(3), 1229–1240 (2010)

    Article  Google Scholar 

  56. K.H. van Dam, I. Nikolic, Z. Lukszo (eds.), Agent-Based Modelling of Socio-technical Systems (Springer Science & Business Media, 2012)

    Google Scholar 

  57. E. Viardot, T. Wierenga, B. Friedrich, The role of cooperatives in overcoming the barriers to adoption of renewable energy. Energy Policy 63, 756–764 (2013)

    Article  Google Scholar 

  58. P.E. Waterson, M.T.O. Gray, C.W. Clegg, A sociotechnical method for designing work systems. Hum. Factors 44, 376–391 (2002)

    Google Scholar 

  59. B. Whitworth, Chapter 66 A brief introduction to sociotechnical systems, in Encyclopedia of Information Science and Technology (IGI Global, 2nd edn., 2009), pp. 394–400

    Google Scholar 

  60. B. Whitworth. The Social Design of Technical Systems: Building Technologies for Communities (The Interaction Design Foundation, 2014)

    Google Scholar 

  61. B. Whitworth, A. Ahmad, The Encyclopedia of Human-Computer Interaction, chapter 24. Socio-Technical System Design (The Interaction Design Foundation, 2nd edn., 2013)

    Google Scholar 

  62. B. Whitworth, A. De Moor (eds.), Handbook of Research on Socio-technical Design and Social Networking Systems (IGI, 2009)

    Google Scholar 

  63. M. Yun, B. Yuxin, Research on the architecture and key technology of internet of things (iot) applied on smart grid, in 2010 International Conference on Advances in Energy Engineering (ICAEE), pp. 69–72 (IEEE, 2010)

    Google Scholar 

  64. A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Internet of Things J. 1(1), 22–32 (2014)

    Google Scholar 

  65. S. Zygiaris, Smart city reference model: assisting planners to conceptualize the building of smart city innovation ecosystems. J. Knowl. Econ. 4(2), 217–231 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Y., Poderi, G., Šćepanović, S., Hasselqvist, H., Warnier, M., Brazier, F. (2019). Embedding Internet-of-Things in Large-Scale Socio-technical Systems: A Community-Oriented Design in Future Smart Grids. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds) The Internet of Things for Smart Urban Ecosystems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-319-96550-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96550-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96549-9

  • Online ISBN: 978-3-319-96550-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics