Abstract
Benchmarking is a process that informs the public about the capabilities of systems-under-test, focuses on expected and unexpected system-bottlenecks, and promises to facilitate system tuning and new systems designs. In this chapter, we survey benchmarking approaches for graph-processing systems. First, we describe the main features of a benchmark for graph-processing systems. Then, we systematically survey across these features a diverse set of benchmarks for RDF databases, benchmarks for graph databases, benchmarks for parallel and distributed graph-processing systems, and data-only benchmarks. We trace in our survey not only the important benchmarks, but also their innovative approaches and how their core ideas evolved from previous benchmarking approaches. Last, we identify ongoing and future research directions for benchmarking initiatives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi D, Agrawal R, Ailamaki A, Balazinska M, Bernstein PA, Carey MJ, Chaudhuri S, Chaudhuri S, Dean J, Doan A, Franklin MJ, Gehrke J, Haas LM, Halevy AY, Hellerstein JM, Ioannidis YE, Jagadish HV, Kossmann D, Madden S, Mehrotra S, Milo T, Naughton JF, Ramakrishnan R, Markl V, Olston C, Ooi BC, Ré C, Suciu D, Stonebraker M, Walter T, Widom J (2016) The Beckman report on database research. Commun ACM 59(2):92–99. http://doi.acm.org/10.1145/2845915
Akoglu L, Faloutsos C (2009) RTG: a recursive realistic graph generator using random typing. Data Min Knowl Discov 19(2):194–209. http://dx.doi.org/10.1007/s10618-009-0140-7
Aluç G, Hartig O, Özsu MT, Daudjee K (2014) Diversified stress testing of RDF data management systems. In: ISWC, pp 197–212
Ammar K, Özsu MT (2013) WGB: towards a universal graph benchmark. In: Advancing big data benchmarks - proceedings of the 2013 workshop series on big data benchmarking, WBDB.cn, Xi’an, July 16–17, 2013 and WBDB.us, San José, CA, October 9–10, 2013 Revised Selected Papers, pp 58–72
Angles R, Boncz PA, Larriba-Pey J, Fundulaki I, Neumann T, Erling O, Neubauer P, Martínez-Bazan N, Kotsev V, Toma I (2014) The linked data benchmark council: a graph and RDF industry benchmarking effort. SIGMOD Record 43(1):27–31. http://doi.acm.org/10.1145/2627692.2627697
Bader DA, Madduri K (2005) Design and implementation of the HPCS graph analysis benchmark on symmetric multiprocessors. In: High performance computing - HiPC 2005, 12th international conference, proceedings, India, December 18–21, 2005, pp 465–476
Bader DA, Feo J, Gilbert J, Kepner J, Koester D, Loh E, Madduri K, Mann B, Meuse T, Robinson E (2009) HPC scalable graph analysis benchmark. Online technical specification, v.1.0, Feb 24. http://www.graphanalysis.org/benchmark/GraphAnalysisBenchmark-v1.0.pdf
Bader et al DA (2010) Graph500. Online technical specification, v.0.1 (2010) through 1.2 (2011). http://www.graph500.org/specifications
Bagan G, Bonifati A, Ciucanu R, Fletcher GHL, Lemay A, Advokaat N (2017) gmark: schema-driven generation of graphs and queries. IEEE Trans Knowl Data Eng 29(4):856–869
Barbosa D, Manolescu I, Yu JX (2009) XML benchmarks. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 3576–3579
Bizer C, Schultz A (2009) The Berlin SPARQL benchmark. Int J Semant Web Inf Syst 5(2):1–24
Blum D, Cohen S (2011) Grr: generating random RDF. In: ESWC, pp 16–30
Brickley D, Guha RV (2014) Rdf schema 1.1. W3C recommendation. https://www.w3.org/TR/rdf-schema/
Capota M, Hegeman T, Iosup A, Prat-Pérez A, Erling O, Boncz PA (2015) Graphalytics: a big data benchmark for graph-processing platforms. In: Proceedings of the third international workshop on graph data management experiences and systems, GRADES 2015, Melbourne, May 31–June 4, 2015, pp 7:1–7:6
Carey MJ, DeWitt DJ, Naughton JF (1993) The oo7 benchmark. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, Washington, May 26–28, 1993, pp 12–21
Cattell RGG, Skeen J (1992) Object operations benchmark. ACM Trans Database Syst 17(1):1–31
Ciglan M, Averbuch A, Hluchý L (2012) Benchmarking traversal operations over graph databases. In: Workshops proceedings of the IEEE 28th international conference on data engineering, ICDE 2012, Arlington, April 1–5, 2012, pp 186–189. http://dx.doi.org/10.1109/ICDEW.2012.47
Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax. W3C recommendation. https://www.w3.org/TR/rdf11-concepts/
Duan S, Kementsietsidis A, Srinivas K, Udrea O (2011) Apples and oranges: a comparison of RDF benchmarks and real RDF datasets. In: SIGMOD, pp 145–156
Elser B, Montresor A (2013) An evaluation study of bigdata frameworks for graph processing. In: Big data
Erling O, Averbuch A, Larriba-Pey J, Chafi H, Gubichev A, Prat A, Pham MD, Boncz P (2015) The LDBC social network benchmark: interactive workload. In: SIGMOD, pp 619–630
Ferdman et al M (2012) Clearing the clouds: a study of emerging scaleout workloads on modern hardware. In: ASPLOS
Gray J (ed) (1993) The benchmark handbook for database and transaction systems, 2nd edn. Morgan Kaufmann, San Mateo
Gubichev A, Boncz P (2014) Parameter curation for benchmark queries. In: TPCTC, pp 113–129
Guo Y, Iosup A (2012) The game trace archive. In: 11th annual workshop on network and systems support for games, NetGames 2012, Venice, November 22–23, 2012, pp 1–6. http://dx.doi.org/10.1109/NetGames.2012.6404027
Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL knowledge base systems. J Web Sem 3(2–3):158–182
Guo et al Y (2014) How well do graph-processing platforms perform? In: IPDPS
Guo et al Y (2015) An empirical performance evaluation of gpu-enabled graph-processing systems. In: CCGrid
Han M, Daudjee K, Ammar K, Özsu MT, Wang X, Jin T (2014) An experimental comparison of pregel-like graph processing systems. PVLDB 7(12):1047–1058
Hofler T et al (2014) GreenGraph500. Online technical specification, v.1.1 (2014). http://green.graph500.org/greengraph500rules.pdf
Iosup A, van de Bovenkamp R, Shen S, Jia AL, Kuipers FA (2014) Analyzing implicit social networks in multiplayer online games. IEEE Int Comput 18(3):36–44. http://dx.doi.org/10.1109/MIC.2014.19
Iosup A, Hegeman T, Ngai WL, Heldens S, Prat-Pérez A, Manhardt T, Chafi H, Capota M, Sundaram N, Anderson MJ, Tanase IG, Xia Y, Nai L, Boncz PA (2016) LDBC graphalytics: a benchmark for large-scale graph analysis on parallel and distributed platforms. PVLDB 9(13):1317–1328. http://www.vldb.org/pvldb/vol9/p1317-iosup.pdf
Jia AL, Shen S, van de Bovenkamp R, Iosup A, Kuipers FA, Epema DHJ (2015) Socializing by gaming: revealing social relationships in multiplayer online games. TKDD 10(2):11. http://doi.acm.org/10.1145/2736698
Käfer T, Harth A (2014) Billion Triples Challenge data set. Downloaded from http://km.aifb.kit.edu/projects/btc-2014/
Lu Y, Cheng J, Yan D, Wu H (2014) Large-scale distributed graph computing systems: an experimental evaluation. PVLDB 8(3):281–292. http://www.vldb.org/pvldb/vol8/p281-lu.pdf
Nai L, Xia Y, Tanase IG, Kim H, Lin C (2015) Graphbig: understanding graph computing in the context of industrial solutions. In: Proceedings of the international conference for high performance computing, networking, storage and analysis, SC 2015, Austin, November 15–20, 2015, pp 69:1–69:12
Pérez J, Arenas M, Gutierrez C (2010) nSPARQL: a navigational language for RDF. J Web Semant 8(4):255–270
Qiao S, Özsoyoglu ZM (2015) RBench: application-specific RDF benchmarking. In: SIGMOD, pp 1825–1838
Satish N et al (2014) Navigating the maze of graph analytics frameworks using massive datasets. In: SIGMOD
Schmidt A, Waas F, Kersten ML, Carey MJ, Manolescu I, Busse R (2002) XMark: a benchmark for XML data management. In: VLDB, pp 974–985
Schmidt M, Hornung T, Lausen G, Pinkel C (2009) SP2Bench: a SPARQL performance benchmark. In: ICDE, pp 222–233
Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BJP, Wang K (2015) An overview of microsoft academic service (MAS) and applications. In: Proceedings of the 24th international conference on World Wide Web, WWW ’15 Companion. ACM, New York, pp 243–246. http://doi.acm.org/10.1145/2740908.2742839
The W3C SPARQL Working Group (2013) SPARQL 1.1 overview. W3C recommendation. https://www.w3.org/TR/sparql11-overview/
Transaction Processing Performance Council (TPC) (2016) TPC benchmark. http://www.tpc.org/
van Leeuwen W, Bonifati A, Fletcher GHL, Yakovets N (2017) Stability notions in synthetic graph generation: a preliminary study. In: EDBT, pp 486–489
Wilson C, Sala A, Puttaswamy KPN, Zhao BY (2012) Beyond social graphs: user interactions in online social networks and their implications. TWEB 6(4):17. http://doi.acm.org/10.1145/2382616.2382620
Yao BB, Özsu MT, Khandelwal N (2004) XBench benchmark and performance testing of XML DBMSs. In: ICDE, pp 621–632
Zhang JW, Tay YC (2016) GSCALER: synthetically scaling a given graph. In: EDBT 2016, pp 53–64
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Bonifati, A., Fletcher, G., Hidders, J., Iosup, A. (2018). A Survey of Benchmarks for Graph-Processing Systems. In: Fletcher, G., Hidders, J., Larriba-Pey, J. (eds) Graph Data Management. Data-Centric Systems and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-96193-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-96193-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96192-7
Online ISBN: 978-3-319-96193-4
eBook Packages: Computer ScienceComputer Science (R0)