Abstract
A brain-computer interface provides individuals with a way to control a computer. However, most of these interfaces remain mostly utilized in research laboratories due to the absence of certainty and accuracy in the proposed systems. In this work, we acquired our own dataset from seven able-bodied subjects and used Deep Multi-Layer Perceptrons to classify motor imagery encephalography signals into binary (Rest vs Imagined and Left vs Right) and ternary classes (Rest vs Left vs Right). These Deep Multi-Layer Perceptrons were fed with power spectral features computed with the Welch’s averaged modified periodogram method. The proposed architectures outperformed the accuracy achieved by the state-of-the-art for classifying motor imagery bioelectrical brain signals obtaining 88.03%, 85.92% and 79.82%, respectively, and an enhancement of 11.68% on average over the commonly used Support Vector Machines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Birbaumer, N.: Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6), 517–532 (2006)
Shih, J.J., Krusienski, D.J., Wolpaw, J.R.: Brain-computer interfaces in medicine. Mayo Clin. Proc. 87(3), 268–279 (2012)
Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)
Becedas, J.: Brain-machine interfaces: basis and advances. IEEE Trans. Syst., Man, Cybern. Part C (Appl. Rev.) 42(6), 825–836 (2012)
Vega, R., Sajed, T., Mathewson, K.W., Khare, K., Pilarski, P., Greiner, R., Sanchez-Ante, G., Antelis, J.M.: Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals. Artif. Intell. Res. 6(1) (2016)
Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 8(2), 211–214 (2000)
Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)
Farwell, L.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)
Millán, J.R., Rupp, R., Müeller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müeller, K., Mattia, D.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4, 1–61 (2010)
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)
Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)
Allison, B., Dunne, S., Leeb, R., Millan, J.R., Nijholt, A.: Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29746-5
Graimann, B., Allison, B.Z., Pfurtscheller, G.: Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02091-9
Wolpaw, J., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice. Oxford University Press, New York (2012)
van Erp, J., Lotte, F., Tangermann, M.: Brain-computer interfaces: beyond medical applications. Computer 45(4), 26–34 (2012)
World Medical Association: World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20), 2191–2194 (2013)
Mellinger, J., Schalk, G.: Number NIPS workshop series. In: BCI2000: A General-Purpose Software Platform for BCI Research. MIT Press (2007)
Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., Grodd, W.: Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J. Cogn. Neurosci. 11(5), 491–501 (1999)
Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967)
Hernández, G., Zamora, E., Sossa, H.: Comparing deep and dendrite neural networks: a case study. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017. LNCS, vol. 10267, pp. 32–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59226-8_4
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., New York (2012)
Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). CoRR abs/1511.07289 (2015)
Lotte, F., Congedo, M., Lécuyer, A., Fabrice, L., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces 4 (2007)
Ali, A.B.M.S., Abraham, A.: An empirical comparison of kernel selection for support vector machines. In: Soft computing Systems: Design, Management and Applications, pp. 321–330 (2002)
Blankertz, B., Curio, G., Müller, K.R.: Classifying single trial EEG: towards brain computer interfacing. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 157–164. MIT Press (2002)
Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G.: Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2(4), L14 (2005)
Morash, V., Bai, O., Furlani, S., Lin, P., Hallett, M.: Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin. Neurophysiol. 119(11), 2570–2578 (2008)
Ge, S., Wang, R., Yu, D.: Classification of four-class motor imagery employing single-channel electroencephalography. PLoS ONE 9(6), 1–7 (2014)
Gudiño-Mendoza, B., Sossa, H., Sanchez-Ante, G., Antelis, J.M.: Classification of motor states from brain rhythms using lattice neural networks. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ayala-Ramírez, V., Olvera-López, J.A., Jiang, X. (eds.) MCPR 2016. LNCS, vol. 9703, pp. 303–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39393-3_30
Antelis, J.M., Gudiño-Mendoza, B., Falcón, L.E., Sanchez-Ante, G., Sossa, H.: Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed. Signal Process. Control 44, 12–24 (2018)
Ojeda, L., et al.: Classification of hand movements from non-invasive brain signals using lattice neural networks with dendritic processing. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS, vol. 9116, pp. 23–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19264-2_3
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 3104–3112 (2014)
Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars. CoRR abs/1604.07316 (2016)
Cecotti, H., Graeser, A.: Convolutional neural network with embedded Fourier transform for EEG classification. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4, December 2008
Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)
Jingwei, L., Yin, C., Weidong, Z.: Deep learning EEG response representation for brain computer interface. In: 2015 34th Chinese Control Conference (CCC), pp. 3518–3523, July 2015
Nurse, E., Mashford, B.S., Jimeno-Yepes, A., Kiral-Kornek, I., Harrer, S., Freestone, D.R.: Decoding EEG and LFP signals using deep learning: heading truenorth. In: Conference on Computing Frontiers, pp. 259–266. ACM (2016)
Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. CoRR abs/1511.06448 (2015)
An, X., Kuang, D., Guo, X., Zhao, Y., He, L.: A deep learning method for classification of EEG data based on motor imagery. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 203–210. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09330-7_25
Jirayucharoensak, S., Pan-ngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation, 2014, Article ID 627892 (2014)
Zheng, W.L., Zhu, J.Y., Peng, Y., Lu, B.L.: EEG-based emotion classification using deep belief networks. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, July 2014
Stober, S., Cameron, D.J., Grahn, J.A.: Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 1449–1457. Curran Associates, Inc., New York (2014)
Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of eeg motor imagery signals. J. Neural Eng. 14(1), 016003 (2017)
Acknowledgements
E. Zamora, H. Sossa and M. Antelis would like to acknowledge the support provided by UPIITA-IPN, CIC-IPN and Tecnológico de Monterrey, respectively, in carrying out this research. This work was economically supported by SIP-IPN (grant numbers 20180180 and 20180730), and CONACYT grant numbers 65 (Frontiers of Science), 268958 and PN2015-873. F. Arce and G. Hernández acknowledge CONACYT for the scholarship granted towards pursuing their PhD studies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Arce, F., Zamora, E., Hernández, G., Antelis, J.M., Sossa, H. (2018). Recognizing Motor Imagery Tasks Using Deep Multi-Layer Perceptrons. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10935. Springer, Cham. https://doi.org/10.1007/978-3-319-96133-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-96133-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96132-3
Online ISBN: 978-3-319-96133-0
eBook Packages: Computer ScienceComputer Science (R0)