Abstract
Foetal distress and hypoxia (oxygen deprivation) is considered as a serious condition and one of the main factors for caesarean section in the obstetrics and Gynecology department. It is the third most common cause of death in new-born babies. Many foetuses that experienced some sort of hypoxic effects can develop series risks including damage to the cells of the central nervous system that may lead to life-long disability (cerebral palsy) or even death. Continuous labour monitoring is essential to observe the foetal well being. Foetal surveillance by monitoring the foetal heart rate with a cardiotocography is widely used. Despite the indication of normal results, these results are not reassuring, and a small proportion of these foetuses are actually hypoxic. In this paper, machine-learning algorithms are utilized to classify foetuses which are experiencing oxygen deprivation using PH value (a measure of hydrogen ion concentration of blood used to specify the acidity or alkalinity) and Base Deficit of extra cellular fluid level (a measure of the total concentration of blood buffer base that indicates the metabolic acidosis or compensated respiratory alkalosis) as indicators of respiratory and metabolic acidosis, respectively, using open source partum clinical data obtained from Physionet. Six well know machine learning classifier models are utilised in our experiments for the evaluation; each model was presented with a set of selected features derived from the clinical data. Classifier’s evaluation is performed using the receiver operating characteristic curve analysis, area under the curve plots, as well as the confusion matrix. Our simulation results indicate that machine-learning algorithms provide viable methods that could delivery improvements over conventional analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Talaulikar, V.S., Arulkumaran, S.: Maternal, perinatal and long-term outcomes after assisted reproductive techniques (ART): implications for clinical practice. Eur. J. Obstet. Gynaecol. Reprod. Biol. 170(1), 13–19 (2013)
Bobrow, C.S., Soothill, P.W.: Causes and consequences of fetal acidosis. Arch. Dis. Child. Fetal Neonatal Edition 80(3), F246–F249 (1999)
Hasan, M.A., Reaz, M.B.I., Ibrahimy, M.I., Hussain, M.S., Uddin, J.: Detection and processing techniques of FECG signal for fetal monitoring. Biol. Proced. Online 11(1), 263 (2009)
Talaulikar, V.S., Arulkumaran, S.: Persistent challenge of intrapartum fetal heart rate monitoring. Dasgupta’s Recent Adv. Obstet. Gynecol. 9, 68 (2012)
Wiberg-Itzel, E., Lipponer, C., Norman, M., Herbst, A., Prebensen, D., Hansson, A., Bryngelsson, A.L., Christoffersson, M., Sennström, M., Wennerholm, U.B., Nordström, L.: Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicentre trial. BMJ 336(7656), 1284–1287 (2008)
Vintzileos, A.M., Nochimson, D.J., Antsaklis, A., Varvarigos, I., Guzman, I., Knuppel, R.A.: Comparison of intrapartum electronic fetal heart monitoring versus intermittent auscultation in detecting fetal acidemia at birth. Am. J. Obstet. Gynecol. 173, 1021–1024 (1995)
Ingemarsson, I., Ingemarsson, E., Spencer, J.A.D.: Fetal Heart Rate Monitoring. A Practical Guide. Oxford University Press, Oxford (1993)
Bretscher, J., Saling, E.: pH values in the human fetus during labor. Am. J. Obstet. Gynecol. 97, 906–911 (1967)
Tuffnell, D., Haw, W.L., Wilkinson, K.: How long does a fetal scalp blood sample take? BJOG 113, 332–334 (2006)
Goldaber, K.G., Gilstrap, L.C., Leveno, K.J., Dags, J.S., McIntire, D.D.: Pathologic fetal acidemia. Obstet. Gynecol. 78, 1103–1107 (1991)
James, L.S., Weisbrot, I.M., Prince, C.E., Holaday, D.A., Apgar, V.: The acid-base status of human infants in relation to birth asphyxia and the onset of respiration. J. Paediatr. 52(4), 379–394 (1958)
Westgren, M., Kuger, K., Ek, S., Grunevald, C., Kublickas, M., Naka, K., et al.: Lactate compared with pH analysis at fetal scalp blood sampling: a prospective randomised study. Br. J. Obstet. Gynaecol. 105, 29–33 (1998)
Malin, G.L., Morris, R.K., Khan, K.S.: Strength of association between umbilical cord pH and perinatal and long-term outcomes: systematic review and meta-analysis. BMJ 340, c1471 (2010)
ACOG Committee on Obstetric Practice: ACOG Committee Opinion No. 348, November 2006: Umbilical cord blood gas and acid-base analysis. Obstetrics and gynaecology, 108(5), p. 1319 (2006)
Yeh, P., Emary, K., Impey, L.: The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: analysis of 51 519 consecutive validated samples. BJOG: Int. J. Obstet. Gynaecol. 119(7), 824–831 (2012)
Strachan, B.K., Sahota, D.S., Wijngaarden, W.J., James, D.K., Chang, A.M.: Computerised analysis of the fetal heart rate and relation to acidaemia at delivery. BJOG Int. J. Obstet. Gynaecol. 108(8), 848–852 (2001)
Georgieva, A., Payne, S.J., Moulden, M., Redman, C.W.: Artificial neural networks applied to fetal monitoring in labour. Neural Comput. Appl. 22(1), 85–93 (2013)
Jeżewski, M., Czabański, R., Wróbel, J., Horoba, K.: Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybern. Biomed. Eng. 30(4), 29–47 (2010)
Keith, R.D., Beckley, S., Garibaldi, J.M., Westgate, J.A., Ifeachor, E.C., Greene, K.R.: A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. BJOG Int. J. Obstet. Gynaecol. 102(9), 688–700 (1995)
Magenes, G., Signorini, M.G., Arduini, D.: Classification of cardiotocographic records by neural networks. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 3, pp. 637–641. IEEE (2000)
Abdillah, A.A.: Suwarno: diagnosis of diabetes using support vector machines with radial basis function kernels. Int. J. Technol. 7(5), 849–858 (2016)
Georgoulas, G., Stylios, C., Groumpos, P.: Feature extraction and classification of foetal heart rate using wavelet analysis and support vector machines. Int. J. Artif. Intell. Tools 15(03), 411–432 (2006)
Georgoulas, G., Gavrilis, D., Tsoulos, I.G., Stylios, C., Bernardes, J., Groumpos, P.P.: Novel approach for fetal heart rate classification introducing grammatical evolution. Biomed. Signal Process. Control 2(2), 69–79 (2007)
Warrick, P.A., Hamilton, E.F., Kearney, R.E., Precup, D.: Classification of normal and hypoxic fetuses using system identification from intrapartum cardiotocography. IEEE Trans. Biomed. Eng. 57, 771–779 (2010)
Spilka, J., Chudáček, V., Koucký, M., Lhotská, L., Huptych, M., Janků, P., Georgoulas, G., Stylios, C.: Using nonlinear features for fetal heart rate classification. Biomed. Signal Process. Control 7(4), 350–357 (2012)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of statistics, pp. 1189–1232 (2001)
Hastie, T., Qian, J.: Glmnet Vignette (2014)
Altman, N.S.: An introduction to kernel and nearest-neighbour nonparametric regression. Am. Stat. 46(3), 175–185 (1992)
Liaw, A., Wiener, M.: Classification and regression by random Forest. R News 2(3), 18–22 (2002)
Breiman, L.: Random Forests. Statistics Department, University of California, Machine learning (2001)
Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)
Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Noreen, E.W.: Computer intensive methods for hypothesis testing: An introduction (1989)
Sykes, G.S., Molloy, P.M., Johnson, P., Stirrat, G.M., Turnbull, A.C.: Fetal distress and the condition of newborn infants. Br. Med. J. (Clin. Res. Ed.) 287(6397), 943–945 (1983)
Steer, P.J.: Fetal monitoring—Present and future. Eur. J. Obst. Gynecol. Reprod. Biol. 24(2), 112–117 (1987)
Berg, P., Schmidt, S., Gesche, J., Saling, E.: Fetal distress and the condition of the newborn using cardiotocography and fetal blood analysis during labour. BJOG Int. J. Obst. Gynecol. 94(1), 72–75 (1987)
Acknowledgement
The authors would like to thanks Liverpool John Moores University for the scholarship to complete this research. In addition, this research work was partially supported by Zayed University Research Cluster Award # R18038.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Abbas, R., Hussain, A.J., Al-Jumeily, D., Baker, T., Khattak, A. (2018). Classification of Foetal Distress and Hypoxia Using Machine Learning Approaches. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_81
Download citation
DOI: https://doi.org/10.1007/978-3-319-95957-3_81
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95956-6
Online ISBN: 978-3-319-95957-3
eBook Packages: Computer ScienceComputer Science (R0)