Nothing Special   »   [go: up one dir, main page]

Skip to main content

Block-Sparse Tensor Based Spatial-Spectral Joint Compression of Hyperspectral Images

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

Abstract

A hyperspectral image is represented as a three-dimensional tensor in this paper to realize the spatial-spectral joint compression. This avoids destroying the feature structure, as in the 2D compression model, the compression operation of the spatial and spectral information is separate. Dictionary learning algorithm is adopted to train three dictionaries on each mode and these dictionaries are applied to build the block-sparse model of hyperspectral image. Then, based on the Tucker Decomposition, the spatial and spectral information of the hyperspectral image is compressed simultaneously. Finally, the structural tensor reconstruction algorithm is utilized to recover the hyperspectral image and it significantly reduce the computational complexity in the block-sparse structure. The experimental results demonstrate that the proposed method is superior to other 3D compression models in terms of accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan, J.C., Ma, J.L., Van de Voorde, T., et al.: Preliminary results of superresolution - enhanced angular hyperspectral (CHRIS/Proba) images for land-cover classification. IEEE Geosci. Remote Sens. Lett. 8(6), 1011–1015 (2011)

    Article  Google Scholar 

  2. Toivanen, P., Kubasova, O., Mielikainen, J.: Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data. IEEE Geosci. Remote Sens. Lett. 2(1), 50–54 (2005)

    Article  Google Scholar 

  3. Shaw, G.A., Burke, H.K.: Spectral imaging for remote sensing. Lincoln Lab. J. 14(1), 3–28 (2003)

    Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Inf. Theor. 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  5. Candè, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  6. Lian, Q., Shi, B., Chen, S.: Research advances on dictionary learning models, algorithms and applications. IEEE J. Autom. Sinica 41(2), 240–260 (2015)

    Google Scholar 

  7. Cesar, F.: Multidimensional compressed sensing and their applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3(6), 355–380 (2013)

    Article  Google Scholar 

  8. Duarte, M.F., Baraniuk, R.G.: Kronecker compressive sensing. 21(2), 494–504 (2012)

    Google Scholar 

  9. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  10. Fang, L., He, N., Lin, H.: CP tensor-based compression of hyperspectral images. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 34(2), 252–258 (2017)

    Article  Google Scholar 

  11. Töreyin, B.U., Yilmaz, O., Mert, Y.M., et al.: Lossless hyperspectral image compression using wavelet transform based spectral decorrelation. In: Recent Advances in Space Technologies, pp. 251–254. IEEE, Istanbul (2015)

    Google Scholar 

  12. Lee, C., Youn, S., Jeong, T., et al.: Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information. IEEE Geosci. Remote Sens. Lett. 12(7), 1491–1495 (2015)

    Article  Google Scholar 

  13. Zhao, D., Zhu, S., Wang, F.: Lossy hyperspectral image compression based on intra-band prediction and inter-band fractal encoding. Comput. Electr. Eng. 54, 494–505 (2016)

    Article  Google Scholar 

  14. Karami, A., Yazdi, M., Mercier, G.: Compression of hyperspectral images using discrete wavelet transform and tucker decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 444–450 (2012)

    Article  Google Scholar 

  15. Wang, L., Bai, J., Wu, J., et al.: Hyperspectral image compression based on lapped transform and Tucker decomposition. Signal Process Image Commun. 36, 63–69 (2015)

    Article  Google Scholar 

  16. Yang, S., Wang, M., Li, P., et al.: Compressive hyperspectral imaging via sparse tensor and nonlinear compressed sensing. IEEE Geosci. Remote Sens. Lett. 53(11), 5043–5957 (2015)

    Google Scholar 

  17. Caiafa, C.F., Cichocki, A.: Computing sparse representations of multidimensional signals using Kronecker bases. Neural Comput. 25(1), 186–220 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Nos. 61572372 & 41671382), LIESMARS Special Research Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoming Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chong, Y., Zheng, W., Li, H., Pan, S. (2018). Block-Sparse Tensor Based Spatial-Spectral Joint Compression of Hyperspectral Images. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics