Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multimodal Data Representation Models for Virtual, Remote, and Mixed Laboratories Development

  • Conference paper
  • First Online:
Smart Industry & Smart Education (REV 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 47))

  • 1391 Accesses

Abstract

The main objective of the research presented in this paper is to provide developers of virtual, remote, and mixed laboratories with the powerful instrument for data representation. The data sets are supposed to have multimodal nature. Three models for multimodal data representation are presented and discussed in the paper. These models are the Muxel Model, the Multilevel Ontological Model, and the Spatio-Temporal Linked Model. The use of these models for implementation of different types of laboratories is discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Potkonjak, V., et al.: Virtual Laboratories for education in science, technology, and engineering: a review. Comput. Educ. 95, 309–327 (2016)

    Article  Google Scholar 

  2. Heradio, R., et al.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016)

    Article  Google Scholar 

  3. Esquembre, F.: Facilitating the creation of virtual and remote laboratories for science and engineering education. ScienceDirect, IFAC-PapersOnLine 48(29), 049–058 (2015)

    Article  Google Scholar 

  4. Gravier, C., et al.: State of the art about remote laboratories paradigms—foundations of ongoing mutations. Int. J. Online Eng. 4(1), 1–9 (2008)

    Google Scholar 

  5. de Jong, T., Linn, M.C., Zacharia, Z.C.: Physical and virtual laboratories in science and engineering education. Science 340, 305–308 (2013)

    Article  Google Scholar 

  6. Top Trends in the Gartner Hype Cycle for Emerging Technologies (2017). http://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/

  7. What Is Digital Twin Technology and Why Is It So Important? https://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-technology-and-why-is-it-so-important/#573fc3c2e2a7

  8. Chen, X., Song, G., Zhang Y.: Virtual and remote laboratory development: a review. In: Proceeding of Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, pp. 3843–3852 (2010)

    Google Scholar 

  9. Sáenz, J., Chacón, J., de la Torre, L., Visioli, A., Dormido S.: Open and low-cost virtual and remote labs on control engineering. IEEE Access 3, 805–814 (2015)

    Article  Google Scholar 

  10. Parkhomenko, A., et al.: Development and application of remote laboratory for embedded systems design. Int. J. Online Eng. 11(3), 27–31 (2015)

    Article  Google Scholar 

  11. Salzmann, C., Govaerts, S., Halimi, W., Gillet, D.: The smart device specification for remote labs. Int. J. Online Eng. (2015)

    Google Scholar 

  12. Kalúz, M., Cirka, L., Valo, R., Fikar, M.: ArPi lab: a low-cost remote laboratory for control education. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa (2014)

    Article  Google Scholar 

  13. Oyediran, S.O., Ayodele, K.P., Akinwale, O.B., Kehinde, L.O.: Development of an operational amplifier iLab using an android-based mobile platform: work in progress. In: Proceedings of 120th ASEE Annual Conference and Exposition (2013)

    Google Scholar 

  14. Tawfik, M., et al.: Virtual Instrument Systems in Reality (VISIR) for remote wiring and measurement of electronic circuits on breadboard. IEEE Trans. Learn. Technol. 6(1), 60–72 (2013)

    Article  Google Scholar 

  15. Hu, W., Liu, G.-P., Zhou, H.: Web-based 3-D control laboratory for remote real-time experimentation. IEEE Trans. Industr. Electron. 60(10), 4673–4682 (2013)

    Article  Google Scholar 

  16. Sancristobal, E., Martín, S., Gil, R., Orduña, P., Tawfik, M., Pesquera, A., Diaz, G., Colmenar, A., García-Zubia, J., Castro, M.: State of art, initiatives and new challenges for virtual and remote labs. In: Proceedings of 12th IEEE International Conference on Advanced Learning Technologies, pp. 714–715 (2012)

    Google Scholar 

  17. Andújar, J.M., et al.: Augmented reality for the improvement of remote laboratories: an augmented remote laboratory. IEEE Trans. Educ. 54(3), 492–500 (2011)

    Article  Google Scholar 

  18. Valera, A., Díez, J.L., Vallés, M., Albertos, P.: Virtual and remote control laboratory development. IEEE Control Syst. Mag. 25, 35–39 (2005)

    Google Scholar 

  19. Nedic, Z., Machotka, J., Najhlski, A.: Remote laboratories versus virtual and real laboratories. In: Proceedings of the 33rd ASEE/IEEE Frontiers in Education Conference (2003)

    Google Scholar 

  20. Virtual Labs: Computer Science and Engineering. http://vlab.co.in/ba_labs_all.php?id=2

  21. Learn Genetics: Virtual Labs: http://learn.genetics.utah.edu/content/labs/

  22. BioInteractive. Virtual Labs: http://www.hhmi.org/biointeractive/explore-virtual-labs

  23. Huawei Developer. Remote Lab: http://developer.huawei.com/ict/en/remotelab

  24. Internet Remote Laboratory. http://remote-lab.fyzika.net

  25. Sulema, Y.: ASAMPL: programming language for mulsemedia data processing based on algebraic system of aggregates. In: Advances in Intelligent Systems and Computing, vol. 725, pp. 431–442. Springer (2018)

    Google Scholar 

  26. Hill, D.L., et al.: Voxel similarity measures for automated image registration. In: SPIE Proceedings of the Visualization in Biomedical Computing, vol. 2359, no 205 (1994)

    Google Scholar 

  27. Carnero, J., Diaz-Pernil, D., Mari, J.L., Real, P.: Doxelo: towards a software for processing and visualizing topology computations in Doxel-based 3D + t images. In: Proceedings of the 16th International Conference on Applications of Computer Algebra, ACA 2010 (2010)

    Google Scholar 

  28. Gonzalez-Diaz, R., et al.: Algebraic topological analysis of time-sequence of digital images. Lecture Notes in Computer Science, vol. 3718, pp. 208–219 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeniya Sulema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sulema, Y., Dychka, I., Sulema, O. (2019). Multimodal Data Representation Models for Virtual, Remote, and Mixed Laboratories Development. In: Auer, M., Langmann, R. (eds) Smart Industry & Smart Education. REV 2018. Lecture Notes in Networks and Systems, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-95678-7_62

Download citation

Publish with us

Policies and ethics