Abstract
Knowledge of all space objects in orbit and the space environment is collected and maintained by the Space Surveillance Network (SSN). This task is becoming more difficult as the number of objects currently tracked increases due to breakup events and improvements in sensor detection capabilities. The SSN is tasked with maintaining information on over 22,000 objects, 1,100 of which are active. In particular, low-Earth orbiting satellites are heavily influenced by atmospheric drag which is difficult to model due to fluctuations in the upper atmospheric density. These fluctuations are caused by variations in the Solar energy flux which heats Earth’s atmosphere causing it to expand. This research uses probabilistic models to characterize and account for the fluctuations in the Earth’s atmosphere. By correctly estimating the fluctuations, our work contributes to improving the ability to determine the likelihood of satellite collisions in space.
The main focus of this chapter is the application of a new Polynomial Chaos based Uncertainty Quantification (UQ) approach for Space Situational Awareness (SSA). The challenge of applying UQ to SSA is the long-term integration problem, where simulations are used to forecast physics over long temporal and/or spatial extrapolation intervals. This chapter applies a Polynomial Chaos (PC) expansion and Gaussian Mixture Models (GMMs) in a hybrid fashion for UQ applied to satellite tracking. This chapter uses the GMM-PC approach for orbital UQ and the PC approach for atmospheric density UQ. Two different application examples are shown. The first example demonstrates the GMM-PC approach for orbital UQ for a low Earth orbit satellite under the influence of atmospheric perturbations. The second example demonstrates the PC approach for atmospheric density UQ, where a physics-based model is used to capture the uncertainty of the atmospheric density under uncertain Solar conditions. These two examples are not combined under this work but the tools developed provide a framework for an unified understanding of UQ for low Earth orbiting satellites.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This number is problem dependent.
- 2.
Multidimensional quadratures.
References
R. Oliva, E. Blasch, R. Ogan, Applying aerospace technologies to current issues using systems engineering: 3rd AESS chapter summit. IEEE Aerosp. Electron. Syst. Mag. 28(2), 34–41 (2013)
D.S. Bernstein, A. Ridley, J. Cutler, A. Cohn, Transformative advances in DDDAS with application to space weather monitoring. Technical report, Department of Aerospace Engineering, University of Michigan, Ann Arbor, 2015
H. Chen, G. Chen, E. Blasch, K. Pham, Comparison of several space target tracking filters. Proc. SPIE 7330, 73300I (2009)
N. Weiner, The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)
V. Vittaldev, R.P. Russell, R. Linares, Spacecraft uncertainty propagation using gaussian mixture models and polynomial chaos expansions. J. Guid. Control. Dyn. 39, 2615–2626 (2016)
A. Hedin, A revised thermospheric model based on mass spectrometer and incoherent scatter data: Msis-83. J. Geophys. Res. 88, 10170–10188 (1983)
J. Picone, A. Hedin, D. Drob, A. Aikin, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), 1468 (2002)
M.F. Storz, B.R. Bowman, M.J.I. Branson, S.J. Casali, W.K. Tobiska, High accuracy satellite drag model (HASDM). Adv. Space Res. 36(12), 2497–2505 (2005)
A. Ridley, Y. Deng, G. Toth, The global ionosphere–thermosphere model. J. Atmos. Sol.-Terr. Phys. 68, 839–864 (2006)
R. Bellmam, Dynamic Programming (Princeton University Press, Princeton, 1957)
C. Sabol, C. Binz, A. Segerman, K. Roe, P.W. Schumacher, Probability of collision with special perturbations dynamics using the monte carlo method, paper AAS 11-435, in AAS/AIAA Astrodynamics Specialist Conference, Girdwood, 31 Jul–4 Aug 2011
R.W. Ghrist, D. Plakalovic, Impact of non-gaussian error volumes on conjunction assessment risk analysis, paper AIAA 2012-4965, in AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, 13–16 Aug, 2012
N. Arora, V. Vittaldev, R.P. Russell, Parallel computation of trajectories using graphics processing units and interpolated gravity models. J. Guid. Control. Dyn. 38, 1345–1355 (2015). Accepted for Publication
H. Shen, V. Vittaldev, C.D. Karlgaard, R.P. Russell, E. Pellegrini, Parallelized sigma point and particle filters for navigation problems, paper AAS 13-034, in 36th Annual AAS Guidance and Control Conference, 1–6 Feb, Breckenridge, 2013
N. Nakhjiri, B.F. Villac, An algorithm for trajectory propagation and uncertainty mapping on GPU, paper AAS 13-376, in 23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai, 2013
S.-Z. Ueng, M. Lathara, S.S. Baghsorkhi, W.-M. W. Hwu, Languages and Compilers for Parallel Computing, ch. CUDA-Lite: Reducing GPU Programming Complexity (Springer, Berlin/Heidelberg, 2008), pp. 1–15
A.B. Poore, Propagation of uncertainty in support of SSA missions, in 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, 2015
D.L. Alspach, H.W. Sorenson, Nonlinear Bayesian estimation using gaussian sum approximations. IEEE Trans. Autom. Control 17(4), 439–448 (1972)
R.S. Park, D.J. Scheeres, Nonlinear mapping of gaussian statistics: theory and applications to spacecraft trajectory design. J. Guid. Control. Dyn. 29(6), 1367–1375 (2006)
S. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92, 401–402 (2004)
M. Norgaard, N.K. Poulsen, O. Ravn, New developments in state estimation for nonlinear systems. Automatica 36(11), 1627–1638 (2000)
I. Arasaratnam, S. Haykin, Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)
D.F. Crouse, On measurement-based light-time corrections for bistatic orbital debris tracking. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2502–2518 (2015)
B. Jia, K.D. Pham, E. Blasch, D. Shen, Z. Wang, G. Chen, Cooperative space object tracking using space-based optical sensors via consensus-based filters. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1908–1936 (2016)
K.J. DeMars, R.H. Bishop, M.K. Jah, Entropy-based approach for uncertainty propagation of nonlinear dynamical systems. J. Guid. Control. Dyn. 36(4), 1047–1057 (2013)
K. Vishwajeet, P. Singla, M. Jah, Nonlinear uncertainty propagation for perturbed two-body orbits. J. Guid. Control. Dyn. 37(5), 1415–1425 (2014)
J.T. Horwood, N.D. Aragon, A.B. Poore, Gaussian sum filters for space surveillance: theory and simulations. J. Guid. Control. Dyn. 34(6), 1839–1851 (2011)
K.J. DeMars, M.K. Jah, A probabilistic approach to initial orbit determination via gaussian mixture models. J. Guid. Control. Dyn. 36(5), 1324–1335 (2013)
K.J. DeMars, Y. Cheng, M.K. Jah, Collision probability with Gaussian mixture orbit uncertainty. J. Guid. Control. Dyn. 37(3), 979–985 (2014)
V. Vittaldev, R.P. Russell, Collision probability for resident space objects using Gaussian mixture models, paper AAS 13-351, in 23rd AAS/AIAA Spaceflight Mechanics Meeting, Kauai, 2013
D. Xiu, G.E. Karniadakis, The wiener-askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)
S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 106, 179–190 (2012)
D.M. Luchtenburga, S.L. Bruntonc, C.W. Rowleyb, Long-time uncertainty propagation using generalized polynomial chaos and flow map composition. J. Comput. Phys. 274, 783–802 (2014)
X. Li, P.B. Nair, Z. Zhang, L. Gao, C. Gao, Aircraft robust trajectory optimization using nonintrusive polynomial chaos. J. Aircr. 51(5), 1592–1603 (2014)
L. Mathelin, M.Y. Hussaini, T.A. Zang, Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms 38(1–3), 209–236 (2005)
M. Dodson, G.T. Parks, Robust aerodynamic design optimization using polynomial chaos. J. Aircr. 46(2), 635–646 (2009)
B.A. Jones, A. Doostan, G.H. Born, Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. J. Guid. Control. Dyn. 36(2), 415–425 (2013)
V. Vittaldev, R. Russell, R. Linares, Spacecraft uncertainty propagation using gaussian mixture models and polynomial chaos expansions. J. Guid. Control Dyn. 39(12), 2615–2626 (2016)
B.A. Jones, A. Doostan, Satellite collision probability estimation using polynomial chaos. Adv. Space Res. 52(11), 1860–1875 (2013)
B.A. Jones, N. Parrish, A. Doostan, Postmaneuver collision probability estimation using sparse polynomial chaos expansions. J. Guid. Control. Dyn. 38(8), 1425–1437 (2015)
G. Terejanu, P. Singla, T. Singh, P.D. Scott, Uncertainty propagation for nonlinear dynamic systems using gaussian mixture models. J. Guid. Control. Dyn. 31(6), 1623–1633 (2008)
M.F. Huber, T. Bailey, H. Durrant-Whyte, U.D. Hanebeck, On entropy approximation for gaussian mixture random vectors, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), 2008, pp. 181–188
V. Vittaldev, R.P. Russell, Multidirectional Gaussian mixtrure models for nonlinear uncertainty propagation. CMES 111(1), 83–117 (2016)
V. Vittaldev, R.P. Russell, Uncertainty propagation using gaussian mixture models. In SIAM Conference on Uncertainty Quatification, (Savannah, GA 2014)
J.M. Aristoff, J.T. Horwood, T. Singh, A.B. Poore, Nonlinear uncertainty propagation in orbital elements and transformation to cartesian space without loss of realism, in AIAA/AAS Astrodynamics Specialist Conference, San Diego, Aug 4–Aug 7, 2014
V. Vittaldev, R.P. Russell, Collision probability using multidirectional gaussian mixture models, in 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, 2015
R. Madankan, P. Singla, T. Singh, P.D. Scott, Polynomial-chaos-based Bayesian approach for state and parameter estimations. J. Guid. Control. Dyn. 36(4), 1058–1074 (2013)
S. Hosder, R.W. Walter, R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations, in 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2006
S. Hosder, R.W. Walter, Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics, in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2010
D. Xiu, G.E. Karniadakis, The wiener–askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)
S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Doklady Akademii nauk SSSR, 1(4), 240–243 (1963)
K. Rawer, D. Bilitza, S. Ramakrishnan, Goals and status of the international reference ionosphere. Rev. Geophys. 16, 177 (1978)
B.R. Bowman, W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, W.J. Burke, A new empirical thermospheric density model jb2008 using new solar and geomagnetic indices, AIAA 2008–6483, in AIAA/AAS Astrodynamics Specialist Conference, Honolulu, 2008
Acknowledgements
The first author wish to acknowledge support of this work by the Air Force’s Office of Scientic Research under Contract Number FA9550-18-1-0149 issued by Erik Blasch.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Linares, R., Vittaldev, V., Godinez, H.C. (2018). Dynamic Data-Driven Uncertainty Quantification via Polynomial Chaos for Space Situational Awareness. In: Blasch, E., Ravela, S., Aved, A. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-95504-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-95504-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95503-2
Online ISBN: 978-3-319-95504-9
eBook Packages: Computer ScienceComputer Science (R0)