Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using the Choquet Integral in the Pooling Layer in Deep Learning Networks

  • Conference paper
  • First Online:
Fuzzy Information Processing (NAFIPS 2018)

Abstract

This paper aims to introduce the proposal of replacing the usual pooling functions by the Choquet integral in Deep Learning Networks. The Choquet integral is an aggregation function studied and applied in several areas, as, e.g., in classification problems. Its importance is related to the fact that it considers the relationship between the data to be aggregated by means of a fuzzy measure, unlike other aggregation functions such as the arithmetic mean and the maximum. The idea of this paper is to use the Choquet integral to reduce the size of an image, obtaining an abstract form of representation, that is, reducing the perception of the network corresponding to small changes in the image. The use of this aggregation function in the place of the max-pooling and mean-pooling functions of Convolutional Neural Networks presented promising results. This assertion is based on the Normalized Cross-Correlation and Structural Content quality measures applied to the original images and resulting images. It is important to emphasize that this preliminary study of Choquet integral as a pool layer has not yet been implemented on Convolutional Neural Networks until the present moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.mathworks.com/products/matlab.html.

References

  1. Agarap, A.F.: An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification. Adamson University, Manila (2017)

    Google Scholar 

  2. Ahmed, A., Yu, K., Xu, W., Gong, Y., Xing, E.: Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 69–82. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_6

    Chapter  Google Scholar 

  3. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 221. Springer, Berlin/Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  4. Boureau, Y.L., Ponce, J., Lecun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), Haifa, Israel, pp. 111–118 (2010)

    Google Scholar 

  5. Choquet, G.: Theory of capacities. In: Annales de l’institut Fourier, Grenoble, France, vol. 5, pp. 131–295 (1954)

    Article  MathSciNet  Google Scholar 

  6. Deepika, J., Vishvanathan, S., KP, S.: Image classification using convolutional neural networks. Int. J. Sci. Eng. Res. 5(6), 1661–1668 (2014)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: imageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)

    Article  Google Scholar 

  9. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions: means. Inf. Sci. 181(1), 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  10. Han, Y., Kim, J., Lee, K., Han, Y., Kim, J., Lee, K.: Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Trans. Audio, Speech Lang. Process. (TASLP) 25(1), 208–221 (2017)

    Article  Google Scholar 

  11. Hodges, J.L., Lehmann, E.L.: Rank methods for combination of independent experiments in analysis of variance. Ann. Math. Stat. 33(2), 482–497 (1962)

    Article  MathSciNet  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-volutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), Stateline, NV, pp. 1097–1105 (2012)

    Google Scholar 

  13. Lecun, Y., Huang, F.J., Bottou, L.: Learning Methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, D.C., USA, vol. 2, pp. II–104. IEEE (2004)

    Google Scholar 

  14. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: Preaggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016)

    Article  Google Scholar 

  15. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Asiain, M.J., Elkano, M., Bustince, H.: CC-integrals: choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl.-Based Syst. 119, 32–43 (2017)

    Article  Google Scholar 

  16. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R.: CF-integrals: a new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018)

    Article  Google Scholar 

  17. Mishra, A., Alahari, K., Jawahar, C.V.: Scene text recognition using higher order language priors. In: 23rd British Machine Vision Conference, BMVC 2012, Paris, France (2012)

    Google Scholar 

  18. Pagola, M., Forcen, J.I., Barrenechea, E., Lopez-Molina, C., Bustince, H.: Use of OWA operators for feature aggregation in image classification. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017), Naples, Italy, pp. 1–6. IEEE (2017)

    Google Scholar 

  19. Saxe, A.M., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y.: On random weights and unsupervised feature learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), Bellevue, Washington, USA, pp. 1089–1096. Bellevue, Washington, USA (2011)

    Google Scholar 

  20. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  21. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  22. Wu, H., Gu, X.: Max-pooling dropout for regularization of convolutional neural networks. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9489, pp. 46–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26532-2_6

    Chapter  Google Scholar 

  23. Wu, J.: Introduction to Convolutional Neural Networks. National Key Lab for Novel Software Technology. Nanjing University, China (2017)

    Google Scholar 

  24. Yu, D., Wang, H., Chen, P., Wei, Z.: Mixed pooling for convolutional neural networks. International Conference on Rough Sets and Knowledge Technology, pp. 364–375. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_34

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Alves Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dias, C.A. et al. (2018). Using the Choquet Integral in the Pooling Layer in Deep Learning Networks. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics