Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multimodal Approach for Cultural Heritage Information Retrieval

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10960))

Included in the following conference series:

Abstract

The daily use of mobile devices and the expansion of the world-wide-web lead multimedia information to an uncontrolled growth. In this context, the use of smart interfaces and the combination of different features in the information retrieval process are crucial aspects. In particular, for a cultural heritage application it is important to consider that a digitized artwork is only a representation of a real object, represented under specific conditions (camera position, brightness, etc.). These issues could be causes of alterations during the features extraction task. In this paper we propose a multimodal approach for cultural heritage information retrieval combining geographic and visual data. Our approach has been implemented in a mobile system based on open source technologies. It is composed of three main parts related to image matching functionalities, Geographic Information Retrieval task, and a combination strategy for multimedia and geographic data integration. An Android application has been developed to give a user friendly interface and a case study together with some experimental results are presented to show the effectiveness of our approach for the user satisfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.google.com/maps. Last seen May 7, 2018.

  2. 2.

    https://www.bing.com/maps. Last seen May 7, 2018.

  3. 3.

    http://frankenplace.com/. Last seen May 7, 2018.

  4. 4.

    https://smartify.org. Last seen May 7, 2018.

  5. 5.

    https://www.travel.getcoo.com. Last seen May 7, 2018.

  6. 6.

    https://cwiki.apache.org/confluence/display/solr/Uploading+Structured+Data+Store+Data+with+the+Data+Import+Handler. Last seen May 7, 2018.

  7. 7.

    https://github.com/google/gson. Last seen May 7, 2018.

References

  1. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)

    Article  Google Scholar 

  2. Chen, C., Wactlar, H.D., Wang, J.Z., Kiernan, K.: Digital imagery for significant cultural and historical materials. Int. J. Digit. Libr. 5(4), 275–286 (2005)

    Article  Google Scholar 

  3. Caldarola, E.G., Rinaldi, A.M.: Big data: a survey - the new paradigms, methodologies and tools. In: Proceedings of 4th International Conference on Data Management Technologies and Applications, pp. 362–370 (2015)

    Google Scholar 

  4. Caldarola, E.G., Picariello, A., Rinaldi, A.M.: Big graph-based data visualization experiences: the WordNet case study. In: 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), vol. 1, pp. 104–115. IEEE (2015)

    Google Scholar 

  5. Caldarola, E.G., Rinaldi, A.M.: Improving the visualization of WordNet large lexical database through semantic tag clouds. In: 2016 IEEE International Congress on Big Data (BigData Congress), pp. 34–41. IEEE (2016)

    Google Scholar 

  6. Caldarola, E.G., Picariello, A., Rinaldi, A.M.: Experiences in WordNet visualization with labeled graph databases. In: Fred, A., Dietz, J.L.G., Aveiro, D., Liu, K., Filipe, J. (eds.) IC3K 2015. CCIS, vol. 631, pp. 80–99. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-52758-1_6

    Chapter  Google Scholar 

  7. Shete, D.S., Chavan, M., Kolhapur, K.: Content based image retrieval. Int. J. Emerg. Technol. Adv. Eng. 2(9), 85–90 (2012)

    Google Scholar 

  8. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison. Inf. Retr. 11(2), 77–107 (2008)

    Article  Google Scholar 

  9. Larson, R.R.: Geographic information retrieval and spatial browsing. Geographic information systems and libraries: patrons, maps, and spatial information. Papers Presented at the 1995 Clinic on Library Applications of Data Processing, 10–12 April 1995 (1996)

    Google Scholar 

  10. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  11. Mark, D.M.: Geographic information science: defining the field. Found. Geograph. Inf. Sci. 1, 3–18 (2003)

    Article  Google Scholar 

  12. Moscato, V., Picariello, A., Rinaldi, A.M.: A recommendation strategy based on user behavior in digital ecosystems. In: Proceedings of the International Conference on Management of Emergent Digital EcoSystems, pp. 25–32. ACM (2010)

    Google Scholar 

  13. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  14. Frederix, G., Caenen, G., Pauwels, E.J.: Panoramic, adaptive and reconfigurable interface for similarity search. In: Proceedings of the 2000 International Conference on Image Processing, vol. 3, pp. 222–225. IEEE (2000)

    Google Scholar 

  15. Giuca, A.M., Seitz, K.A., Furst, J., Raicu, D.: Expanding diagnostically labeled datasets using content-based image retrieval. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 2397–2400. IEEE (2012)

    Google Scholar 

  16. Irtaza, A., Jaffar, M.A., Muhammad, M.S.: Content based image retrieval in a web 3.0 environment. Multimed. Tools Appl. 74(14), 5055–5072 (2015)

    Article  Google Scholar 

  17. Karamti, H., Tmar, M., Visani, M., Urruty, T., Gargouri, F.: Vector space model adaptation and pseudo relevance feedback for content-based image retrieval. Multimed. Tools Appl. 77, 1–27 (2017)

    Google Scholar 

  18. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In: 19th International Conference on Scientific and Statistical Database Management, SSBDM 2007, p. 16. IEEE (2007)

    Google Scholar 

  19. Han, A., Nickerson, B.G.: Efficient combined text and spatial search. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 713–728. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21470-2_52

    Chapter  Google Scholar 

  20. Mattmann, C.A., Sharan, M.: An automatic approach for discovering and geocoding locations in domain-specific web data (application paper). In: 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), pp. 87–93. IEEE (2016)

    Google Scholar 

  21. Adams, B., McKenzie, G., Gahegan, M.: Frankenplace: interactive thematic mapping for ad hoc exploratory search. In: Proceedings of the 24th International Conference on World Wide Web, pp. 12–22. ACM (2015)

    Google Scholar 

  22. Di Pinto, V., Rinaldi, A.: A configurational approach based on geographic information systems to support decision-making process in real estate domain. Soft Comput. 1–10 (2018). https://link.springer.com/article/10.1007/s00500-018-3142-9#citeas

  23. Rinaldi, A.: A GIS-based system for electromagnetic risk management in urban areas. J. Locat. Based Serv. 3(1), 3–23 (2009)

    Article  Google Scholar 

  24. Białecki, A., Muir, R., Ingersoll, G., Imagination, L.: Apache lucene 4. In: SIGIR 2012 Workshop on Open Source Information Retrieval, p. 17 (2012)

    Google Scholar 

  25. Shahi, D.: Apache Solr: an introduction. In: Shahi, D. (ed.) Apache Solr, pp. 1–9. Springer, Heidelberg (2015). https://doi.org/10.1007/978-1-4842-1070-3_1

    Chapter  Google Scholar 

  26. Lux, M., Chatzichristofis, S.A.: LIRE: lucene image retrieval: an extensible Java CBIR library. In: Proceedings of the 16th ACM International Conference on Multimedia, pp. 1085–1088. ACM (2008)

    Google Scholar 

  27. Lux, M., Macstravic, G.: The LIRE request handler: a solr plug-in for large scale content based image retrieval. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8326, pp. 374–377. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04117-9_39

    Chapter  Google Scholar 

  28. Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum.-Comput. Interact. 7(1), 57–78 (1995)

    Article  Google Scholar 

  29. Caldarola, E.G., Rinaldi, A.M.: An approach to ontology integration for ontology reuse. In: 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), pp. 384–393. IEEE (2016)

    Google Scholar 

  30. Caldarola, E.G., Rinaldi, A.M.: A multi-strategy approach for ontology reuse through matching and integration techniques. In: Rubin, S.H., Bouabana-Tebibel, T. (eds.) FMI/IRI 2016 -2016. AISC, vol. 561, pp. 63–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56157-8_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. Rinaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Purificato, E., Rinaldi, A.M. (2018). A Multimodal Approach for Cultural Heritage Information Retrieval. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10960. Springer, Cham. https://doi.org/10.1007/978-3-319-95162-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95162-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95161-4

  • Online ISBN: 978-3-319-95162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics