Abstract
Aifred Health, one of the top two teams in the first round of the IBM Watson AI XPRIZE competition, is using deep learning to solve the problem of treatment selection and prognosis prediction in mental health, starting with depression. Globally, depression affects over 300 million people and is the leading cause of disability. While a range of effective treatments do exist, patients’ responses to treatments vary to a large degree. Some patients spend years going through a frustrating ‘trial-and-error’ process in order to find an effective treatment. The Aifred Health solution is a deep learning-powered Clinical Decision Support System (CDSS) aimed at helping clinicians select the most effective treatment plans for depression in collaboration with their patients. In this chapter, we discuss problem of treatment selection in depression and explore the technical, clinical, and ethical dimensions of building a CDSS for mental health based on deep learning technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi M., et al. (2016). TensorFlow: Large–Scale Machine Learning on Heterogeneous Distributed Systems. arXiv preprint arXiv:1603.04467v2
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM–IV–TR. Washington, DC: American Psychiatric Association.
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC. Author[1]
Asilomar AI Principles. 2016. Retrieved October 24 2017, from https://futureoflife.org/ai– principles/.
Beck A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck depression inventory–II. San Antonio, TX: Psychological Corporation.
Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., Popp J. (2012). Sample Size Planning for Classification Models. arXiv:1211.1323 [stat.AP]
Bergstra J., et al. 2010. “Theano: A CPU and GPU Math Compiler in Python”.
Berlim M.T., Fleck, M.P., Turecki, G., 2008. Current trends in the assessment and somatic treatment of resistant refractory major depression: An overview. Ann. Med. 40, 149–159.
Berlim M.T., Turecki, G., 2007. Definition, assessment, and staging of treatment–resistant refractory major depression: A review of current concepts and methods. Can. J. Psychiatry 52, 46–54.
Braddock C. H. (2010). The Emerging Importance and Relevance of Shared Decision Making to Clinical Practice. Medical Decision Making, 30(5_ suppl), 5–7. https://doi.org/10.1177/0272989X10381344
Busner J., & Targum, S. D. (2007). The Clinical Global Impressions Scale. Psychiatry (Edgmont), 4(7), 28–37.
Brand S. J., Möller, M., & Harvey, B. H. (2015). A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Current Neuropharmacology, 13(3), 324–368. http://doi.org/10.2174/1570159X13666150307004545
Breitenstein B., Scheuer, S., Holsboer, F., 2014. Are there meaningful biomarkers of treatment response for depression? Drug Discov. Today 19, 539–61.
Bromet E., Andrade, L. H., Hwang, I., Sampson, N. A., Alonso, J., de Girolamo, G., …Kessler, R. C. (2011). Cross–national epidemiology of DSM–IV major depressive episode. BMC Medicine, 9 – 90. https://doi.org/10.1186/1741-7015-9-90
Burns P. B., Rohrich, R. J., & Chung, K. C. (2011). The Levels of Evidence and their role in Evidence–Based Medicine. Plastic and Reconstructive Surgery, 128(1), 305–310. https://doi.org/10.1097/PRS.0b013e318219c171
Chi K.F., Korgaonkar, M., Grieve, S.M., 2015. Imaging predictors of remission to anti–depressant medications in major depressive disorder. J. Affect. Disord. 186, 134–144.
Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE. Exercise for depression. Cochrane Database of Systematic Reviews 2013, Issue 9. Art. No.: CD004366. https://doi.org/10.1002/14651858.CD004366.pub6.
Cressey D. (2011). Psychopharmacology in crisis. Available at: https://www.nature.com/news/2011/110614/full/news.2011.367.html
De Carlo, V., Calati, R., Serretti, A., 2016. Socio–demographic and clinical predictors of non–response/non–remission in treatment resistant depressed patients: A systematic review. Psychiatry Res. 240, 421–430.
Dice L. R. 1945. Measures of the amount of ecologic association between species. Ecology.; 26(3):297–302. https://doi.org/10.2307/1932409.
Dichter G.S., Gibbs, D., Smoski, M.J., 2016. A systematic review of relations between resting–state functional–MRI and treatment response in major depressive disorder. J. Affect. Disord. 172.
Dieleman S., et al. 2015. “Lasagne: First release.”
Dmochowski J. P., Sajda, P., Parra, L. C. (2010). Maximum Likelihood in Cost–Sensitive Learning: Model Specification, Approximations, and Upper Bounds. Journal of Machine Learning Research 11 3313–3332
Duval F., Lebowitz, B.D., Macher, J.P., 2006. Treatments in depression. Dialogues in. Clin. Neurosci. 8, 191–206.
Ferrari A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J. L., . . . Whiteford, H. A. (2013). Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLOS Medicine, 10 (11), e1001547. https://doi.org/10.1371/journal.pmed.1001547
Fitzpatrick K. K., Darcy, A., & Vierhile, M. (2017). Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Mental Health, 4(2), e19.
Fushiki T. (2011). Estimation of prediction error by using K–fold cross–validation. Statistics and Computing, Volume 21, Issue 2, pp 137–146
Gilbody S. M., House, A. O., & Sheldon, T. A. (2002). Psychiatrists in the UK do not use outcomes measures: National survey. The British Journal of Psychiatry, 180(2), 101–103. https://doi.org/10.1192/bjp.180.2.101
Goldman HH, Skodol AE, Lave TR: “Revising Axis V for DSM–IV: A Review of Measures of Social Functioning.” American Journal of Psychiatry 149:1148–1156, 1992.
Goodfellow I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT press.
Gravel R., Beland, Y. The Canadian Community Health Survey: mental health and well–being. Can J Psychiatry. 2005 Sep;50(10):573–9.
Guyon I., Elisseff, A. (2003). An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3 1157–1182
Han J., Jentzen, A., Weinan, E. (2017). Overcoming the curse of dimensionality: Solving high–dimensional partial differential equations using deep learning. arXiv:1707.02568v1
Hahn T., Nierenberg, A. A., & Whitfield–Gabrieli, S. (2017). Predictive analytics in mental health: applications, guidelines, challenges and perspectives. Molecular psychiatry, 22(1), 37.
Hajian-Tilaki, K. 2013. “Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation”.
Huang G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.(2017). Snapshot Ensembles: Train 1, get M for free. arXiv: 1704.00109v1 [Cs, Stat] . Retrieved from http://arxiv.org/abs/1704.00109
Hughes G. 2017. Montreal AI pioneer warns against unethical uses of new tech. CBC News.
IEEE. 2016. The IEEE Global Initiative for Ethical Consideration in Artificial Intelligence and Autonomous Systems. Institute of Electrical and Electronics Engineers.
Information Technology Industry Council. 2017. ITI AI Policy Principles. Retrieved from https://www.itic.org/resources/AI--Policy--Principles--FullReport2.pdf
Intel. 2017. Artificial Intelligence? The Public Policy Opportunity. Intel Corporation. Retrieved from http://blogs.intel.com/policy/files/2017/10/Intel--Artificial--Intelligence--Public--Policy--White--Paper--2017.pdf
Jolliffe IT. Principal Component Analysis. New York: Springer; 2002.
Kemp A., Gordon, E., Rush, A., & Williams, L. (2008). Improving the Prediction of Treatment Response in Depression: Integration of Clinical, Cognitive, Psychophysiological, Neuroimaging, and Genetic Measures. CNS Spectrums, 13(12), 1066–1086. https://doi.org/10.1017/S1092852900017120
Kenefick H., Lee J., Fleishman V. (2008). Improving Physician Adherence to Clinical Practice Guidelines, Barriers and strategies for change, New England Healthcare Institute, February 2008. http://www.nehi.net/writable/publication_files/file/cpg_report_final.pdf
Kennedy S. H., Lam, R. W., McIntyre, R. S., Tourjman, S. V., Bhat, V., Blier, P., et al. CANMAT Depression Work Group. (2016). Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 61(9), 540–560. https://doi.org/10.1177/0706743716659417
Khan A., Faucett, J., Lichtenberg, P., Kirsch, I., & Brown, W. A. (2012). A Systematic Review of Comparative Efficacy of Treatments and Controls for Depression. Plos One, 7(7), e41778. https://doi.org/10.1371/journal.pone.0041778
Kingma D. P., Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980v9
Kirsch I. (2014). Antidepressants and the Placebo Effect. Zeitschrift Fur Psychologie, 222(3), 128–134. https://doi.org/10.1027/2151--2604/a000176
Klambauer G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self–Normalizing Neural Networks. arXiv:1706.02515 [Cs, Stat].
Klengel T., Binder, E.B., 2013. Gene x environment interactions in the prediction of response to antidepressant treatment. Int. J. Neuropsychopharmacol. 16, 701–711
Krizhevsky A., Sutskever, I., Hinton, G. 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012)
Kroenke K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ–9. Journal of General Internal Medicine, 16(9), 606–613. https://doi.org/10.1046/j.1525--1497.2001.016009606.x
Lalkhen A. G., & McCluskey, A. (2008). Clinical tests: sensitivity and specificity. Continuing Education in Anaesthesia Critical Care & Pain, 8(6), 221–223.
Lambert J. (2011). Statistics in Brief: How to Assess Bias in Clinical Studies? Clinical Orthopaedics and Related Research, 469(6), 1794–1796. https://doi.org/10.1007/s11999--010--1538--7
Lener M.S., Iosifescu, D. V, 2015. In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: a review of the literature. https://doi.org/10.1111/nyas.12759
Leuchter A. F., Cook, I. A., Hamilton, S. P., Narr, K. L., Toga, A., Hunter, A. M., . . . Lebowitz, B. D. (2010). Biomarkers to predict antidepressant response. Curr. Psychiatry Rep. 12, 553–562. http://doi.org/10.1007/s11920--010--0160--4
Lopresti A.L., Maker, G.L., Hood, S.D., Drummond, P.D., 2013. A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers, in: Progress in Neuro Psychopharmacology and Biological Psychiatry. 48.
Luo W., Li, Y., Urtason, R., Zemel, R. (2016). Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 29
McIntyre R.S., 2010. When should you move beyond first–line therapy for depression? J. Clin. Psychiatry 71, 16–20.
Miller A.H., Haroon, E., Felger, J.C., 2016. Therapeutic Implications of Brain–Immune Interactions: Treatment in Translation. Neuropsychopharmacology 42, 334–359.
Montgomery S.A., Asberg M. (1979) A new depression scale designed to be sensitive to change. British Journal of Psychiatry, 134, 382–389.
O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. (2016); Penguin Books
Papakostas G.I., Fava, M., 2009. Predictors, moderators, and mediators (correlates) of treatment outcome in major depressive disorder. Dialogues Clin. Neurosci. 10, 439–451.
Pasquale F., The Black Box Society: The Secret Algorithms That Control Money and Information (2015); Harvard University Press
Patel V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu–Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial intelligence in medicine, 46(1), 5–17.
Pedregosa F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. 2011. Scikit–learn: Machine Learning in Python. The Journal of Machine Learning Research. Volume 12, pages 2825–2830.
Pfizer (2018). https://www.pfizer.com/news/featured_stories/featured_stories_detail/learn_more_about_our_neuroscience_r_d_decision
Porcelli S., Fabbri, C., Serretti, A., 2012. Meta–analysis of serotonin transporter gene promoter polymorphism (5–HTTLPR) association with antidepressant efficacy. Eur. Neuropsychopharmacol. 22, 239–258.
Ronneberger O., Fischer, P., Brox, T. (2015). U–Net: Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597
Rosenfeld A., & Kraus S. (2018). Predicting Human Decision–Making: From Prediction to Action. Morgan and Claypool Publishing.
Rosenfeld A., Keshet, J., Goldman, C. V., & Kraus, S. (2016). Online Prediction of Exponential Decay Time Series with Human–Agent Application. In ECAI (pp. 595–603).
Roth H., Lu, L., Farag, A., Shin, A.C., Liu, J., Turkbey, E., Summers, R. (2015). DeepOrgan: Multi–level Deep Convolutional Networks for Automated Pancreas Segmentation. Arxiv:1506.06448v1
Sansone R. A., & Sansone, L. A. (2012). Antidepressant Adherence: Are Patients Taking Their Medications? Innovations in Clinical Neuroscience, 9(5–6), 41–46.
Schmidt A. (2000). Implicit human computer interaction through context. Personal technologies, 4(2), 191–199.
Schmidt F.M., Kirkby, K.C., Lichtblau, N., 2016. Inflammation and immune regulation as potential drug targets in antidepressant treatment. Curr. Neuropharmacol. 14, 674–687.
Shalev-Shwartz, S. (2012). Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2), 107–194.
Shin S. H., Bode, A. M., & Dong, Z. (2017). Precision medicine: the foundation of future cancer therapeutics. Npj Precision Oncology, 1(1), 12. https://doi.org/10.1038/s41698–017–0016–z
Simon G.E., Perlis, R.H., 2010. Personalized medicine for depression: Can we match patients with treatments? Am. J. Psychiatry 167, 1445–1455.
Simonyan K., Vedaldi, A., Zisserman, A. (2013). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv:1312.6034v2 [Cs, Stat].
Srivastava N., Hinton, G., Krizhevsky, A., Ilya Sutskever, I., Salakhutdinov, R. (2013). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15 (1929–1958)
Stone P., Brooks R., Brynjolfsson E., Calo R., Etzioni O., Hager G., Hirschberg J., Kalyanakrishnan S., Karmar E., Kraus S., Leyton–Brown K., Parkes D., Press W., Sanexian A., Shah J., Tambe M., Teller A. (2016). Artificial Intelligence and Life in 2030. One Hundred Year Study on Artificial Intelligence.
Tai-Seale, M., McGuire, T. G., & Zhang, W. (2007). Time Allocation in Primary Care Office Visits. Health Services Research, 42(5), 1871–1894. https://doi.org/10.1111/j.1475–6773. 2006.00689.x
Taylor D., Paton, C., & Kapur, S. (2015). The maudsley prescribing guidelines in psychiatry.
Thum F. et al. (2014) Usability Improvement of a Clinical Decision Support System. In: Marcus A. (eds) Design, User Experience, and Usability. User Experience Design for Everyday Life Applications and Services. DUXU 2014. Lecture Notes in Computer Science, vol 8519. Springer, Cham
Turecki G., & Brent, D. A. (2016). Suicide and suicidal behaviour. The Lancet, 387(10024), 1227–1239. https://doi.org/10.1016/S0140–6736(15)00234–2
van der Maaten L., Hinton G. (2008). Visualizing Data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html
Walkup J. T. (2017). Antidepressant Efficacy for Depression in Children and Adolescents: Industry– and NIMH–Funded Studies. American Journal of Psychiatry, 174(5), 430–437. https://doi.org/10.1176/appi.ajp.2017.16091059
Wallach W., & Allen, C. 2010. Moral Machines: Teaching Robots Right from Wrong. New York, NY, USA: Oxford University Press.
Warden D., Rush, A.J., Trivedi, M.H., Fava, M., Wisniewski, S.R., 2008. The STAR*D Project results: a comprehensive review of findings. Curr Psychiatry Rep 9, 449–459.
World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization; 2017.
Xiao H., Rasul, K., Vollgraf, R. (2017) Fashion–MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv:1708.07747
Yoon J., Alaa, A., Hu, S., & Schaar, M. (2016). ForecastICU: a prognostic decision support system for timely prediction of intensive care unit admission. In International Conference on Machine Learning (pp. 1680–1689).
Young J.J., Silber, T., Bruno, D., Galatzer–Levy, I.R., Pomara, N., Marmar, C.R., (2016). Is there progress? An overview of selecting biomarker candidates for major depressive disorder.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Benrimoh, D. et al. (2018). Aifred Health, a Deep Learning Powered Clinical Decision Support System for Mental Health. In: Escalera, S., Weimer, M. (eds) The NIPS '17 Competition: Building Intelligent Systems. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-94042-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-94042-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94041-0
Online ISBN: 978-3-319-94042-7
eBook Packages: Computer ScienceComputer Science (R0)