Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Agent-Based Simulation Using Conjoint Data: The Case of Electric Vehicles in Germany

  • Conference paper
  • First Online:
Operations Research Proceedings 2017

Part of the book series: Operations Research Proceedings ((ORP))

Abstract

Agent-based models are currently in wide use in innovation and technology diffusion research, as they are able to capture the inherent complexity arising from adoption processes and they allow the consideration of various influences of the underlying social systems. While they are sometimes criticized as “toy models”, agent-based models often do not reach their full potential if they lack an empirical foundation. Therefore, we present an agent-based simulation that addresses consumers’ adoption behavior of electric and plug-in hybrid electric vehicles in Germany using various empirical data sources for parametrization and validation. In particular, we conducted a focus group and a choice-based conjoint study. Additionally, our model is to our knowledge the first that takes into account explicitly and comprehensively the supply of home charging options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barabási, A.-L., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random networks. Physica A, 272(1–2), 173–187.

    Article  Google Scholar 

  2. Ellen, P. S., Bearden, W. O., & Sharma, S. (1991). Resistance to technological innovations: An examination of the role of self-efficacy and performance satisfaction. Journal of the Academy of Marketing Science, 19(4), 297–307.

    Article  Google Scholar 

  3. Frenzel, I., Jarass, J., Trommer, S., & Lenz, B. (2015). Erstnutzer von Elektrofahrzeugen in Deutschland: Nutzerprofile, Anschaffung, Fahrzeugnutzung (First-time users of electric vehicles in Germany: user profiles, acquisition, vehicle use). Berlin: Deutsches Zentrum für Luft- und Raumfahrt e. V.

    Google Scholar 

  4. Garcia, R., & Jager, W. (2011). From the special issue editors: Agent-based modeling of innovation diffusion. Journal of Product Innovation Management, 28(2), 148–151.

    Article  Google Scholar 

  5. Götz, K., Sunderer, G., Birzle-Harder, B., & Deffner, J. (2012). Attraktivität und Akzeptanz von Elektroautos. Ergebnisse aus dem Projekt OPTUM - Optimierung der Umweltentlastungspotenziale von Elektrofahrzeugen (Attractiveness and acceptance of electric cars. Results from the OPTUM project - Optimizing the environmental impact potential of electric vehicles). ISOE-Studientexte, vol 18. ISOE - Institut für sozial-ökologische Forschung, Frankfurt am Main.

    Google Scholar 

  6. Günther, M., & Stummer, C. (in press). Simulating the diffusion of competing multi-generation technologies: An agent-based model and its application to the consumer computer market in Germany. In A. Fink, A. Fügenschuh & M.J. Geiger (Eds.), Operations Research Proceedings 2016.

    Google Scholar 

  7. Hidruea, M. K., Parsons, G. R., Kempton, W., & Gardner, M. P. (2011). Willingness to pay for electric vehicles and their attributes. Resource and Energy Economics, 33(3), 686–705.

    Article  Google Scholar 

  8. Kaiser, A. (2016). Warum Holland grün angemalten Spritschluckern 7000 Euro schenkt (Why Holland pays greenly sprinkled 7,000 euros), manager magazin online. Retrieved July 14, 2017, from http://www.manager-magazin.de/politik/europa/elektromobilitaet-so-setzt-der-elektroauto-boom-hollands-fiskus-zu-a-1072200.html.

  9. Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2012). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20(2), 183–230.

    Article  Google Scholar 

  10. Krupa, J. S., Rizzo, D. M., Eppstein, M. J., Lanute, B. D., Galeema, D. E., Lakkaraju, K., et al. (2014). Analysis of a consumer survey on plug-in hybrid electric vehicles. Transportation Research Part A: Policy and Practice, 64(14), 31.

    Google Scholar 

  11. Kraftfahrt Bundesamt. (2016). Fahrzeugzulassungen im Juni 2016 (Vehicle registrations in June 2016), 21/2016.

    Google Scholar 

  12. Morrissey, P., Weldon, P., & O’Mahony, M. (2016). Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour. Energy Policy, 89, 257–270.

    Article  Google Scholar 

  13. Noori, M., & Tatari, O. (2016). Development of an agent-based model for regional market penetration projections of electric vehicles in the United States. Energy, 96, 215–230.

    Article  Google Scholar 

  14. Orme, B. (2000). Hierarchical Bayes: Why All the Attention? Sawtooth Software, Research Paper.

    Google Scholar 

  15. Sawtooth. (2016) Lighthouse Studio v9.0. Sawtooth Software,Manual.

    Google Scholar 

  16. Silvia, C., & Krause, R. M. (2016). Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model. Energy Policy, 96, 105–118.

    Article  Google Scholar 

  17. Stummer, C., Kiesling, E., Günther, M., & Vetschera, R. (2015). Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach. European Journal of Operational Research, 245(1), 157–167.

    Article  Google Scholar 

  18. Zhang, T., Gensler, S., & Garcia, R. (2011). A study of the diffusion of alternative fuel vehicles: An agent-based modeling approach. Journal of Product Innovation Management, 28(2), 152–168.

    Article  Google Scholar 

  19. Zsifkovits, M., & Günther, M. (2015). Simulating resistances in innovation diffusion over multiple generations: an agent-based approach for fuel-cell vehicles. Central European Journal of Operations Research, 23(2), 501–522.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Günther, M., Klein, M., Lüpke, L. (2018). An Agent-Based Simulation Using Conjoint Data: The Case of Electric Vehicles in Germany. In: Kliewer, N., Ehmke, J., Borndörfer, R. (eds) Operations Research Proceedings 2017. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-89920-6_79

Download citation

Publish with us

Policies and ethics