Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effective Semantic Relationship Classification of Context-Free Chinese Words with Simple Surface and Embedding Features

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10619))

  • 3372 Accesses

Abstract

This paper describes the system we submitted to Task 1, i.e., Chinese Word Semantic Relation Classification, in NLPCC 2017. Given a pair of context-free Chinese words, this task is to predict the semantic relationships of them among four categories: Synonym, Antonym, Hyponym and Meronym. We design and investigate several surface features and embedding features containing word level and character level embeddings together with supervised machine learning methods to address this task. Officially released results show that our system ranks above average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://code.google.com/archive/p/word2vec.

  2. 2.

    https://pan.baidu.com/s/1mhPddpu.

  3. 3.

    https://www.csie.ntu.edu.tw/~cjlin/liblinear/.

  4. 4.

    http://scikit-learn.org/stable/.

  5. 5.

    https://github.com/dmlc/xgboost.

  6. 6.

    https://archive.org/details/zhwiki-20160501.

  7. 7.

    https://github.com/bwbaugh/wikipedia-extractor.

  8. 8.

    https://pypi.python.org/pypi/OpenCC.

  9. 9.

    https://github.com/fxsjy/jieba.

References

  1. Wu, Y., Zhang, M.: Overview of the NLPCC 2017 shared task: Chinese word semantic relation classification. In: The 6th Conference on Natural Language Processing and Chinese Computing, Dalian, China, 8–12 November 2017

    Google Scholar 

  2. Hendrickx, I., Kim, S.N., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Padó, S., Pennacchiotti, M., Romano, L., Szpakowicz, S.: Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, pp. 94–99. Association for Computational Linguistics (2009)

    Google Scholar 

  3. Hashimoto, K., Stenetorp, P., Miwa, M., Tsuruoka, Y.: Task-oriented learning of word embeddings for semantic relation classification. arXiv preprint arXiv:1503.00095 (2015)

  4. dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. arXiv preprint arXiv:1504.06580 (2015)

  5. Silva, V.S., Hürliman, M., Davis, B., Handschuh, S., Freitas, A.: Semantic relation classification: task formalisation and refinement. In: COLING 2016, p. 30 (2016)

    Google Scholar 

  6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates Inc., Red Hook (2013)

    Google Scholar 

  7. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)

    Google Scholar 

  8. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: ACL, vol. 1, pp. 1555–1565 (2014)

    Google Scholar 

  9. Guo, S., Guan, Y., Li, R., Zhang, Q.: Chinese word similarity computing based on combination strategy. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC-2016. LNCS (LNAI), vol. 10102, pp. 744–752. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_67

    Chapter  Google Scholar 

  10. Pei, J., Zhang, C., Huang, D., Ma, J.: Combining word embedding and semantic lexicon for chinese word similarity computation. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC-2016. LNCS (LNAI), vol. 10102, pp. 766–777. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_69

    Chapter  Google Scholar 

  11. Zhao, J., Zhu, T., Lan, M.: ECNU: one stone two birds: ensemble of heterogenous measures for semantic relatedness and textual entailment. In: SemEval@ COLING, pp. 271–277 (2014)

    Google Scholar 

  12. Qiu, X., Gong, J., Huang, X.: Overview of the NLPCC 2017 shared task: Chinese news headline categorization. arXiv:1706.02883v1 (2017)

  13. Jiaju, M., Yiming, Z., Yunqi, G., Hong-Xiang, Y.: Tongyici Cilin. ShangHai Dictionary Publication (1983)

    Google Scholar 

  14. Dong, Z., Dong, Q., Hao, C.: Hownet and the Computation of Meaning. World Scientific, Singapore (2006)

    Book  Google Scholar 

Download references

Acknowledgements

This research is supported by grants from NSFC (61402175), Science and Technology Commission of Shanghai Municipality (14DZ2260800 and 15ZR1410700), Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (ZF1213) and Duty Collection Center (Shanghai) of the General Administration of Customs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Lan or Yuanbin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Lan, M., Wu, Y. (2018). Effective Semantic Relationship Classification of Context-Free Chinese Words with Simple Surface and Embedding Features. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2017. Lecture Notes in Computer Science(), vol 10619. Springer, Cham. https://doi.org/10.1007/978-3-319-73618-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73618-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73617-4

  • Online ISBN: 978-3-319-73618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics