Nothing Special   »   [go: up one dir, main page]

Skip to main content

The CAMETRON Lecture Recording System: High Quality Video Recording and Editing with Minimal Human Supervision

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2018)

Abstract

In this paper, we demonstrate a system that automates the process of recording video lectures in classrooms. Through special hardware (lecturer and audience facing cameras and microphone arrays), we record multiple points of view of the lecture. Person detection and tracking, along with recognition of different human actions are used to digitally zoom in on the lecturer, and alternate focus between the lecturer and the slides or the blackboard. Audio sound source localization, along with face detection and tracking, is used to detect questions from the audience, to digitally zoom in on the member of the audience asking the question and to improve the quality of the sound recording. Finally, an automatic video editing system is used to naturally switch between the different video streams and to compose a compelling end product. We demonstrate the working system in two classrooms, over two 2-h lectures, given by two lecturers.

This work is supported by the Cametron Project grant.

Excluding the corresponding author, authors are listed in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Seminar recordings: https://youtu.be/DalAafs38TU Matthew recordings: https://youtu.be/p3ZeFfj238g.

  2. 2.

    https://youtu.be/4Ruzv9jAZ6E.

References

  1. Aerts, B., Goedemé, T., Vennekens, J.: A probabilistic logic programming approach to automatic video montage. In: ECAI, pp. 234–242 (2016)

    Google Scholar 

  2. Blandin, C., Ozerov, A., Vincent, E.: Multi-source TDOA estimation in reverberant audio using angular spectra and clustering. Signal Process. 92(8), 1950–1960 (2012)

    Article  Google Scholar 

  3. Brotherton, J.A., Abowd, G.D.: Lessons learned from eclass: assessing automated capture and access in the classroom. ACM Trans. Comput.-Hum. Interact. (TOCHI) 11(2), 121–155 (2004)

    Article  Google Scholar 

  4. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR (2016)

    Google Scholar 

  5. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  7. Hahn, E.: Video lectures help enhance online information literacy course. Ref. Serv. Rev. 40(1), 49–60 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hulens, D., Van Beeck, K., Goedemé, T.: Fast and accurate face orientation measurement in low-resolution images on embedded hardware. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016), vol. 4, pp. 538–544. Scitepress (2016)

    Google Scholar 

  9. Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  11. Lampi, F., Kopf, S., Benz, M., Effelsberg, W.: An automatic cameraman in a lecture recording system. In: Proceedings of the International Workshop on Educational Multimedia and Multimedia Education, pp. 11–18. ACM (2007)

    Google Scholar 

  12. Marchand, J.P., Pearson, M.L., Albon, S.P.: Student and faculty member perspectives on lecture capture in pharmacy education. Am. J. Pharm. Educ. 78(4), 74 (2014)

    Article  Google Scholar 

  13. Mavlankar, A., Agrawal, P., Pang, D., Halawa, S., Cheung, N.M., Girod, B.: An interactive region-of-interest video streaming system for online lecture viewing. In: 18th International Packet Video Workshop (PV), pp. 64–71. IEEE (2010)

    Google Scholar 

  14. Mestre, X., Lagunas, M.A.: On diagonal loading for minimum variance beamformers. In: Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 459–462. IEEE (2003)

    Google Scholar 

  15. Pearce, D.: Aurora working group: DSR front end LVCSR evaluation AU/384/02. Ph.D. thesis, Mississippi State University (2002)

    Google Scholar 

  16. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., et al.: The kaldi speech recognition toolkit. In: Workshop on Automatic Speech Recognition and Understanding (ASRU), No. EPFL-CONF-192584. IEEE (2011)

    Google Scholar 

  17. Rui, Y., Gupta, A., Grudin, J., He, L.: Automating lecture capture and broadcast: technology and videography. Multimed. Syst. 10(1), 3–15 (2004)

    Article  Google Scholar 

  18. Schulte, O.A., Wunden, T., Brunner, A.: Replay: an integrated and open solution to produce, handle, and distributeaudio-visual (lecture) recordings. In: Proceedings of the 36th Annual ACM SIGUCCS Fall Conference: Moving Mountains, Blazing Trails, pp. 195–198. ACM (2008)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  20. Tan, Z.H., Lindberg, B.: Low-complexity variable frame rate analysis for speech recognition and voice activity detection. IEEE J. Sel. Top. Signal Process. 4(5), 798–807 (2010)

    Article  Google Scholar 

  21. Tugrul, T.O.: Student perceptions of an educational technology tool: video recordings of project presentations. Procedia-Soc. Behav. Sci. 64, 133–140 (2012)

    Article  Google Scholar 

  22. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)

    Google Scholar 

  23. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  24. Zhang, C., Rui, Y., Crawford, J., He, L.W.: An automated end-to-end lecture capture and broadcasting system. ACM Trans. Multimed. Comput. Commun. App. (TOMM) 4(1), 6 (2008)

    Google Scholar 

  25. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dries Hulens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hulens, D. et al. (2018). The CAMETRON Lecture Recording System: High Quality Video Recording and Editing with Minimal Human Supervision. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10704. Springer, Cham. https://doi.org/10.1007/978-3-319-73603-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73603-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73602-0

  • Online ISBN: 978-3-319-73603-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics