Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploratory Spatio-Temporal Queries in Evolving Information

  • Conference paper
  • First Online:
Mobility Analytics for Spatio-Temporal and Social Data (MATES 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10731))

Abstract

Using evolving information within rapid mapping activities in the response phase of emergency situations poses a number of questions related to the quality of information being provided. In this paper, we focus on image extraction from social networks, in particular Twitter, in case of emergencies. In this case issues arise about the temporal and spatial location of images, which can be refined over time as information about the event is being collected and (automatically) analyzed. The paper describes a scenario for rapid mapping in an emergency event and how information quality can evolve over time. A model for managing and analyzing the evolving information is proposed to be used as a basis for analyzing the images quality for mapping purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.e2mc-project.eu/.

  2. 2.

    http://emergency.copernicus.eu/mapping/ems/service-overview.

  3. 3.

    https://www.openstreetmap.org.

  4. 4.

    Notice that they are not the complete set of posted tweets with that image. Some tweets could not be retrieved and \(\approx \)2.7% of the retrieved tweets are not available anymore. Moreover, to find also the same image at different resolutions or with slight modifications a hashing algorithm has been used and it has false negatives.

  5. 5.

    This is true if it would be possible to confirm that the image comes from the target event; in general the starting point of the interval is unknown or, equivalently, the precision associated to the interval of two hours is low.

  6. 6.

    https://github.com/Leaflet/Leaflet.markercluster.

  7. 7.

    http://leafletjs.com/.

References

  1. Al-Rfou, R., Kulkarni, V., Perozzi, B., Skiena, S.: Polyglot-NER: massive multilingual named entity recognition. In: Proceedings of the 2015 SIAM International Conference on Data Mining, Vancouver, British Columbia, Canada, 30 April – 2 May 2015, April 2015

    Google Scholar 

  2. Andrienko, G.L., Andrienko, N.V., Fuchs, G.: Understanding movement data quality. J. Locat. Based Serv. 10(1), 31–46 (2016). https://doi.org/10.1080/17489725.2016.1169322

    Article  Google Scholar 

  3. Andrienko, N., Andrienko, G., Fuchs, G., Rinzivillo, S., Betz, H.D.: Detection, tracking, and visualization of spatial event clusters for real time monitoring. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2015. 36678 2015, pp. 1–10. IEEE (2015)

    Google Scholar 

  4. Batini, C., Scannapieco, M.: Data and Information Quality - Dimensions, Principles and Techniques. DSA. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24106-7

    Book  MATH  Google Scholar 

  5. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on Twitter. In: ICWSM, vol. 11, pp. 438–441 (2011)

    Google Scholar 

  6. Brusoni, V., Console, L., Terenziani, P., Pernici, B.: Qualitative and quantitative temporal constraints and relational databases: theory, architecture, and applications. IEEE Trans. Knowl. Data Eng. 11(6), 948–968 (1999). https://doi.org/10.1109/69.824613

    Article  Google Scholar 

  7. Castillo, C.: Big crisis data: social media in disasters and time-critical situations (2016)

    Google Scholar 

  8. Davis Jr., C.A., Pappa, G.L., de Oliveira, D.R.R., de L Arcanjo, F.: Inferring the location of Twitter messages based on user relationships. Trans. GIS 15(6), 735–751 (2011)

    Article  Google Scholar 

  9. Di Blas, N., Mazuran, M., Paolini, P., Quintarelli, E., Tanca, L.: Exploratory computing: a comprehensive approach to data sensemaking. Int. J. Data Sci. Anal. 3(1), 61–77 (2017). https://doi.org/10.1007/s41060-016-0039-5

    Article  Google Scholar 

  10. Dyreson, C., Grandi, F., Käfer, W., Kline, N., Lorentzos, N., Mitsopoulos, Y., Montanari, A., Nonen, D., Peressi, E., Pernici, B., et al.: A consensus glossary of temporal database concepts. ACM Sigmod Rec. 23(1), 52–64 (1994)

    Article  Google Scholar 

  11. E2mC Team: Analysis of Copernicus Witness integration issues, E2mC deliverable D1.3, April 2017

    Google Scholar 

  12. Francalanci, C., Guglielmino, P., Montalcini, M., Scalia, G., Pernici, B.: Imext: a method and system to extract geolocated images from tweets analysis of a case study. In: Research Challenges in Information Science (RCIS), 2017 IEEE Eleventh International Conference on Research Challenges in Information Science, Brighton, UK, May 2017. IEEE (2017)

    Google Scholar 

  13. Francalanci, C., Pernici, B.: Data integration and quality requirements in emergency services. In: Advances in Service-Oriented and Cloud Computing. Springer (in press)

    Google Scholar 

  14. Gelernter, J., Mushegian, N.: Geo-parsing messages from microtext. Trans. GIS 15(6), 753–773 (2011)

    Article  Google Scholar 

  15. Ghufran, M., Quercini, G., Bennacer, N.: Toponym disambiguation in online social network profiles. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 6. ACM (2015)

    Google Scholar 

  16. Guglielmino, P., Montalcini, M.: Extracting relevant content from social media for emergency management contexts. Master thesis, Politecnico di Milano (2016)

    Google Scholar 

  17. Imran, M., Castillo, C., Diaz, F., Vieweg, S.: Processing social media messages in mass emergency: a survey. ACM Comput. Surv. (CSUR) 47(4), 67 (2015)

    Article  Google Scholar 

  18. Imran, M., Elbassuoni, S.M., Castillo, C., Diaz, F., Meier, P.: Extracting information nuggets from disaster-related messages in social media. In: Proceedings of ISCRAM, Baden-Baden, Germany (2013)

    Google Scholar 

  19. Imran, M., Mitra, P., Castillo, C.: Twitter as a lifeline: human-annotated Twitter corpora for NLP of crisis-related messages. arXiv preprint arXiv:1605.05894 (2016)

  20. Inkpen, D., Liu, J., Farzindar, A., Kazemi, F., Ghazi, D.: Detecting and disambiguating locations mentioned in Twitter messages. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 321–332. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18117-2_24

    Google Scholar 

  21. Liu, F., Vasardani, M., Baldwin, T.: Automatic identification of locative expressions from social media text: a comparative analysis. In: Proceedings of the 4th International Workshop on Location and the Web, pp. 9–16. ACM (2014)

    Google Scholar 

  22. Nugroho, R., Yang, J., Zhao, W., Paris, C., Nepal, S.: What and with whom? Identifying topics in Twitter through both interactions and text. IEEE Trans. Serv. Comput. PP(99), 1 (2017)

    Article  Google Scholar 

  23. Paradesi, S.M.: Geotagging tweets using their content. In: FLAIRS Conference (2011)

    Google Scholar 

  24. Reuter, T., Cimiano, P.: Event-based classification of social media streams. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, p. 22. ACM (2012)

    Google Scholar 

  25. Ritter, A., Clark, S., Etzioni, O., et al.: Named entity recognition in tweets: an experimental study. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1524–1534. Association for Computational Linguistics (2011)

    Google Scholar 

  26. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013). https://doi.org/10.1109/TKDE.2012.29

    Article  Google Scholar 

  27. Scalia, G.: Network-based content geolocation on social media for emergency management. Master thesis, Politecnico di Milano, April 2017

    Google Scholar 

  28. Tamura, K., Ichimura, T.: Density-based spatiotemporal clustering algorithm for extracting bursty areas from georeferenced documents. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2079–2084. IEEE (2013)

    Google Scholar 

  29. Wasay, A., Athanassoulis, M., Idreos, S.: Queriosity: automated data exploration. In: Carminati, B., Khan, L. (eds.) 2015 IEEE International Congress on Big Data, New York City, NY, USA, 27 June – 2 July 2015, pp. 716–719. IEEE (2015). https://doi.org/10.1109/BigDataCongress.2015.116

  30. Zhang, W., Gelernter, J.: Geocoding location expressions in Twitter messages: a preference learning method. J. Spat. Inf. Sci. 2014(9), 37–70 (2014)

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the European Commission H2020 project E\(^{2}\)mC “Evolution of Emergency Copernicus services” under project No. 730082. This work expresses the opinions of the authors and not necessarily those of the European Commission. The European Commission is not liable for any use that may be made of the information contained in this work. The authors thank Paolo Ravanelli for his support in creating event-specific crawlers, and Paolo Gugliemino and Matteo Montalcini for their work on the case study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Pernici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Francalanci, C., Pernici, B., Scalia, G. (2018). Exploratory Spatio-Temporal Queries in Evolving Information. In: Doulkeridis, C., Vouros, G., Qu, Q., Wang, S. (eds) Mobility Analytics for Spatio-Temporal and Social Data. MATES 2017. Lecture Notes in Computer Science(), vol 10731. Springer, Cham. https://doi.org/10.1007/978-3-319-73521-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73521-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73520-7

  • Online ISBN: 978-3-319-73521-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics