Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Unified Numerical Approach for a Large Class of Nonlinear Black-Scholes Models

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10665))

Included in the following conference series:

  • 1263 Accesses

Abstract

In this paper, we consider a class of non-linear models in mathematical finance, where the volatility depends on the second spatial derivative of the option value. We study the convergence and realization of the constructed, on a fitted non-uniform meshes, implicit difference schemes. We implement various Picard and Newton iterative processes. Numerical experiments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Ehrhardt, M.: Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing. Nova Science Publishers, New York (2008)

    MATH  Google Scholar 

  3. Feng, J., Liu, S.: An improved generalized Newton method for absolute value equations. SpringerPlus 5(1), 10–42 (2016)

    Article  MathSciNet  Google Scholar 

  4. Haentjens, T., In’t Hout, K.J.: Alternating direction implicit finite difference schemes for the Heston-Hull-White PDE. J. Comput. Finan. 16(1), 83–110 (2012)

    Article  Google Scholar 

  5. Haghani, F.K.: On generalized Traub’s method for absolute value equations. J. Optim. Theory Appl. 166(2), 619–625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Koleva, M.N., Vulkov, L.G.: On splitting-based numerical methods for nonlinear models of European options. Int. J. Comput. Math. 3(5), 781–796 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lesmana, D.C., Wang, S.: An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs. Appl. Math. Comput. 219(16), 8811–8828 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pooley, D., Forsythy, P., Vetzalz, K.: Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23(2), 241–267 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ševčovič, D.: Nonlinear parabolic equations arising in mathematical finance. In: Ehrhardt, M., Günther, M., ter Maten, E.J.W. (eds.) Novel Methods in Computational Finance. MI, vol. 25, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61282-9_1

    Chapter  Google Scholar 

  11. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Engelwood Cliffs (1962)

    Google Scholar 

  12. Yong, L.: An iterative method for absolute value equations problem. Information 16(1), 7–12 (2013). International Information Institute (Tokyo)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bulgarian National Fund of Science under Project “Advanced Analytical and Numerical Methods for Nonlinear Differential Equations with Applications in Finance and Environmental Pollution”-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miglena N. Koleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koleva, M.N., Vulkov, L.G. (2018). A Unified Numerical Approach for a Large Class of Nonlinear Black-Scholes Models. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73441-5_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73440-8

  • Online ISBN: 978-3-319-73441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics