Abstract
In this paper, we consider a class of non-linear models in mathematical finance, where the volatility depends on the second spatial derivative of the option value. We study the convergence and realization of the constructed, on a fitted non-uniform meshes, implicit difference schemes. We implement various Picard and Newton iterative processes. Numerical experiments are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance. Cambridge University Press, Cambridge (1997)
Ehrhardt, M.: Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing. Nova Science Publishers, New York (2008)
Feng, J., Liu, S.: An improved generalized Newton method for absolute value equations. SpringerPlus 5(1), 10–42 (2016)
Haentjens, T., In’t Hout, K.J.: Alternating direction implicit finite difference schemes for the Heston-Hull-White PDE. J. Comput. Finan. 16(1), 83–110 (2012)
Haghani, F.K.: On generalized Traub’s method for absolute value equations. J. Optim. Theory Appl. 166(2), 619–625 (2015)
Koleva, M.N., Vulkov, L.G.: On splitting-based numerical methods for nonlinear models of European options. Int. J. Comput. Math. 3(5), 781–796 (2016)
Lesmana, D.C., Wang, S.: An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs. Appl. Math. Comput. 219(16), 8811–8828 (2013)
Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)
Pooley, D., Forsythy, P., Vetzalz, K.: Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23(2), 241–267 (2003)
Ševčovič, D.: Nonlinear parabolic equations arising in mathematical finance. In: Ehrhardt, M., Günther, M., ter Maten, E.J.W. (eds.) Novel Methods in Computational Finance. MI, vol. 25, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61282-9_1
Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Engelwood Cliffs (1962)
Yong, L.: An iterative method for absolute value equations problem. Information 16(1), 7–12 (2013). International Information Institute (Tokyo)
Acknowledgements
This research was supported by the Bulgarian National Fund of Science under Project “Advanced Analytical and Numerical Methods for Nonlinear Differential Equations with Applications in Finance and Environmental Pollution”-2017.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Koleva, M.N., Vulkov, L.G. (2018). A Unified Numerical Approach for a Large Class of Nonlinear Black-Scholes Models. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_64
Download citation
DOI: https://doi.org/10.1007/978-3-319-73441-5_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73440-8
Online ISBN: 978-3-319-73441-5
eBook Packages: Computer ScienceComputer Science (R0)