Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Characteristic Analysis for Complexity of Continuous Chaotic Systems Based on the Algorithms of SE Complexity and C0 Complexity

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2017)

Abstract

In this paper, SE algorithm and C0 algorithm were described in detail. The complexity characteristics of Lü chaotic system, Chua chaotic memristive system, Bao hyperchaotic system, Chen hyperchaotic system are analyzed based on SE algorithm and C0 algorithm. We have compared with the dynamical characteristics of four systems by using the conventional dynamic analysis methods and the methods of complexity, the comparative results demonstrate that SE complexity and C0 complexity can reflect the complexity of continuous chaotic systems accurately and effectually. Through the contrast for the complexity characteristics of two continuous chaotic systems and two continuous hyperchaotic systems, we can obtain that the varying trend of SE complexity and C0 complexity have much well coherence, and it provides a dynamical analytical method for the research of chaos theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mou, J., Wang, Z.S., Kang, L.: Synchronous control of unified chaotic system based on stated observer and its application in secure communication. J. Dalian Polytech. Univ. 27(2), 162–166 (2008)

    Google Scholar 

  2. Sun, K.H., Liu, W., Zhang, T.S.: Implementation of a chaos encryption algorithm. J. Comput. Appl. 23(1), 15–17 (2003)

    Article  Google Scholar 

  3. Zhang, Y.C., Wang, S.J., Li, Y.: Detection of encrypted data-flow based on entropy. Comput. Digit. Eng. 42(4), 555–558 (2014)

    Google Scholar 

  4. Chen, W.T., Zhuang, J., Yu, W.X., et al.: Measuring complexity using Fuzzyen, ApEn and Sampen. Med. Eng. Phys. 31(1), 61–68 (2009)

    Article  Google Scholar 

  5. Sun, K.H., He, S.B., Yin, L.Z., et al.: Application of Fuzzyen algorithm to the analysis of complexity of chaotic sequence. Acta Phys. Sin. 61(13), 130507 (2012)

    Google Scholar 

  6. Chen, X.J., Li, Z., Bai, B.M., et al.: A new complexity metric of chaotic pseudorandom sequences based on Fuzzy entropy. J. Electron. Inf. Technol. 33(5), 1198–1203 (2011)

    Article  Google Scholar 

  7. Sun, K.H., He, S.B., Sheng, L.Y.: Complexity analysis of chaotic sequence based on the intensive statistical complexity algorithm. Acta Phys. Sin. 60(2), 2406–2411 (2011)

    Google Scholar 

  8. Larrondo, H.A., Gonzalez, C.M., Martin, M.T., et al.: Intensive statistical complexity measure of pseudorandom number generators. Phys. Stat. Mech. Appl. 356(1), 133–138 (2005)

    Article  Google Scholar 

  9. Kolmogorov, A.N.: Three approaches for defining the concept of information quantity. Prob. Inf. Transm. 1(1), 3–11 (1965)

    MATH  Google Scholar 

  10. Lempel, A., Ziv, J.: On the complexity of finite sequence. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eviatar, H., Somorjai, R.L.: A fast, simple active contour algorithm for biomedical images. Pattern Recogn. Lett. 17(9), 969–974 (1996)

    Article  Google Scholar 

  12. Gneiting, T., Raftery, A.E.: Weather forecasting with ensemble methods. Science 310(5746), 248–249 (2005)

    Article  Google Scholar 

  13. Liao, X.F., Yue, B., Zhou, Q., et al.: A field programmable gate array implementation of an image encryption algorithm based on a discrete chaotic map. J. Chongqing Univ. 31(10), 1189–1193 (2008)

    Google Scholar 

  14. Pincus, S.M.: Approximate entropy (ApEn) as a complexity measure. Chaos 5(1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  15. Bant, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 1741–1743 (2002)

    Google Scholar 

  16. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12(3), 659–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bao, B.C., Liu, Z., Xu, J.P.: Dynamical analysis of memristor chaotic oscillator. Acta Phys. Sin. 59(6), 3785–3793 (2010)

    Google Scholar 

  18. Bao, B.C., Liu, Z., Xu, J.P.: New chaotic system and its hyperchaos generation. Syst. Eng. Electron. 20(6), 1179–1187 (2009)

    Google Scholar 

  19. Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback control. Int. J. Bifurcat. Chaos 15(10), 3367–3375 (2011)

    Article  Google Scholar 

  20. Sun, K.H., He, S.B., He, Y., Yin, L.Z.: Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm. Acta Phys. Sin. 62(1), 709–712 (2013)

    Google Scholar 

  21. Staniczenko, P.P.A., Lee, C.F., Jones, N.S.: Rapidly detecting disorder in rhythmic biological signals: a spectral entropy measure to identify cardiac arrhythmias. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 79(1), 100–115 (2009)

    Google Scholar 

  22. Dong, Y.Q., Tan, G.Q., Sun, K.H., He, S.B.: Applications of spectral entropy and wavelet entropy algorithm for structure complexity analysis of chaotic sequence. J. Chin. Comput. Syst. 35(2), 348–352 (2014)

    Google Scholar 

  23. Chen, F., Xu, J.H., Gu, F.J., et al.: Dynamic process of information transmission complexity in humaxbrains. Biol. Cybern. 83(4), 355–366 (2000)

    Article  Google Scholar 

  24. Cai, Z.J., Sun, J.: Modified C0 complexity and application. J. Fudan Univ. 47(6), 791–796 (2008)

    MathSciNet  Google Scholar 

  25. Sun, K.H., He, S.B., Zhu, C.X., He, Y.: Analysis of chaotic complexity characteristics based on C0 algorithm. Tien Tzu HsuehPao/Acta Electronica Sin. 41(9), 1765–1771 (2013)

    Google Scholar 

Download references

Acknowledgements

This work supported by the Provincial Natural Science Foundation of Liaoning (Grant Nos. 20170540060 and 2015020031), Science and Technology Project of Dalian, China (2015A11GX011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, X., Mou, J., Wang, Z., Li, P., Luo, C. (2018). Dynamic Characteristic Analysis for Complexity of Continuous Chaotic Systems Based on the Algorithms of SE Complexity and C0 Complexity. In: Gu, X., Liu, G., Li, B. (eds) Machine Learning and Intelligent Communications. MLICOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-73447-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73447-7_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73446-0

  • Online ISBN: 978-3-319-73447-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics