Abstract
Informally, a chemical reaction network is “atomic” if each reaction may be interpreted as the rearrangement of indivisible units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity of deciding whether a given network is atomic according to each of these definitions.
Primitive atomic, which requires each reaction to preserve the total number of atoms, is shown to be equivalent to mass conservation. Since it is known that it can be decided in polynomial time whether a given chemical reaction network is mass-conserving [28], the equivalence we show gives an efficient algorithm to decide primitive atomicity.
Subset atomic further requires all atoms be species. We show that deciding if a network is subset atomic is in \(\mathsf {NP}\), and “whether a network is subset atomic with respect to a given atom set” is strongly \(\mathsf {NP}\)-\(\mathsf {complete}\).
Reachably atomic, studied by Adleman, Gopalkrishnan et al. [1, 22], further requires that each species has a sequence of reactions splitting it into its constituent atoms. Using a combinatorial argument, we show that there is a polynomial-time algorithm to decide whether a given network is reachably atomic, improving upon the result of Adleman et al. that the problem is decidable. We show that the reachability problem for reachably atomic networks is \(\mathsf {PSPACE}\)-\(\mathsf {complete}\).
Finally, we demonstrate equivalence relationships between our definitions and some cases of an existing definition of atomicity due to Gnacadja [21].
This work was supported by NSF grant 1619343.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This usage of the term “atomic” is different from its usage in traditional areas like operating system or syntactic analysis, where an “atomic” execution is an uninterruptable unit of operation [41].
- 2.
There is typically a positive real-valued rate constant associated to each reaction, but we ignore reaction rates in this paper and consequently simplify the definition.
References
Adleman, L., Gopalkrishnan, M., Huang, M.-D., Moisset, P., Reishus, D.: On the mathematics of the law of mass action. In: Kulkarni, V.V., Stan, G.-B., Raman, K. (eds.) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pp. 3–46. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9041-3_1
Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.: Time-space trade-offs in molecular computation. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2560–2579 (2017)
Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210, 598–618 (2007)
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006). https://doi.org/10.1007/s00446-005-0138-3. Preliminary version appeared in PODC 2004
Brijder, R., Doty, D., Soloveichik, D.: Robustness of expressivity in chemical reaction networks. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 52–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43994-5_4
Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2 (2012)
Chen, H., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation by chemical reaction networks. Distributed Computing (2015, to appear). Special issue of invited papers from DISC 2014
Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2013). Special issue of invited papers from DNA 2012
Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: ITCS 2014: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 313–326 (2014)
Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)
Chubanov, S.: A polynomial projection algorithm for linear feasibility problems. Math. Program. 153(2), 687–713 (2015)
Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Computat. 44(11), 1551–1565 (2009)
Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical reaction networks. Nat. Comput. 1–17 (2015). https://dx.doi.org/10.1007/s11047-015-9501-x. Special issue of invited papers from DNA 2014
Deshpande, A., Gopalkrishnan, M.: Autocatalysis in reaction networks. arXiv preprint arXiv:1309.3957 (2013)
Doty, D.: Timing in chemical reaction networks. In: SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 772–784, January 2014
Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction networks. Nat. Comput. 14(2), 213–223 (2015). Preliminary version appeared in DNA
Doty, D., Zhu, S.: Computational complexity of atomic chemical reaction networks. arXiv preprint arXiv:1702.05704 (2017)
Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population protocols. Acta Inform. 54, 1–25 (2016)
Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New York (1979)
Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac. J. Math. 16(2), 285–296 (1966). http://projecteuclid.org/euclid.pjm/1102994974
Gnacadja, G.: Reachability, persistence, and constructive chemical reaction networks (part II): a formalism for species composition in chemical reaction network theory and application to persistence. J. Math. Chem. 49(10), 2137 (2011)
Gopalkrishnan, M.: Private communication. Email (2016)
Guldberg, C.M., Waage, P.: Studies concerning affinity. In: Forhandlinger: Videnskabs-Selskabet i Christinia, p. 35. Norwegian Academy of Science and Letters (1864)
Horn, F.J.M.: The dynamics of open reaction systems. In: SIAM-AMS Proceedings VIII, pp. 125–137 (1974)
Jiang, H., Salehi, S.A., Riedel, M.D., Parhi, K.K.: Discrete-time signal processing with DNA. ACS Synth. Bafiology 2(5), 245–254 (2013)
Leroux, J.: Vector addition system reachability problem: a short self-contained proof. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 41–64. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-3_3
Lien, Y.E.: A note on transition systems. Inf. Sci. 10(2), 347–362 (1976)
Mayr, E.W., Weihmann, J.: A framework for classical Petri net problems: conservative Petri nets as an application. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 314–333. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_17
Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7(1) (2011)
Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013)
Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5(4), 252–260 (2011)
Padirac, A., Fujii, T., Rondelez, Y.: Nucleic acids for the rational design of reaction circuits. Curr. Opin. Biotechnol. 24(4), 575–580 (2013)
Papadimitriou, C.H.: On the complexity of integer programming. J. ACM (JACM) 28(4), 765–768 (1981)
Qian, L., Winfree, E., Bruck, J.: Neural network computation with dna strand displacement cascades. Nature 475(7356), 368–372 (2011)
Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196 (2011)
Salehi, S.A., Parhi, K.K., Riedel, M.D.: Chemical reaction networks for computing polynomials. ACS Synth. Biol. 6, 76–83 (2016)
Salehi, S.A., Riedel, M.D., Parhi, K.K.: Asynchronous discrete-time signal processing with molecular reactions. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 1767–1772. IEEE (2014)
Salehi, S.A., Riedel, M.D., Parhi, K.K.: Markov chain computations using molecular reactions. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 689–693. IEEE (2015)
Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)
Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006). http://www.sciencemag.org/cgi/doi/10.1126/science.1132493
Silberschatz, A., Galvin, P.B., Gagne, G., Silberschatz, A.: Operating System Concepts. Addison-Wesley, Reading (2013)
Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008). https://doi.org/10.1007/s11047-008-9067-y
Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393 (2010). Preliminary version appeared in DNA 2008
Srinivas, N.: Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement. Ph.D. thesis, California Institute of Technology (2015)
Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand displacement systems. In: DNA 2012: Proceedings of the 18th International Meeting on DNA Computing and Molecular Programming, pp. 135–149 (2012)
Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)
Acknowledgements
The authors are thankful to Manoj Gopalkrishnan, Gilles Gnacadja, Javier Esparza, Sergei Chubanov, Matthew Cook, and anonymous reviewers for their insights and useful discussion.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Doty, D., Zhu, S. (2018). Computational Complexity of Atomic Chemical Reaction Networks. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-73117-9_15
Published:
Publisher Name: Edizioni della Normale, Cham
Print ISBN: 978-3-319-73116-2
Online ISBN: 978-3-319-73117-9
eBook Packages: Computer ScienceComputer Science (R0)