Nothing Special   »   [go: up one dir, main page]

Skip to main content

Behind the Communities, a Focus on the Sparse Part of a Network

  • Conference paper
  • First Online:
Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

  • 4839 Accesses

Abstract

We propose a method that allows to detect the subset of the sparse nodes in a complex network, providing supplementary informations about its structure and features. The aim is to produce a complementary approach to the classical ones dealing with dense communities, and in the end to develop mixed models of community classification which are articulated around the network’s sparse skeleton. We will present in this article different metrics that measure sparsity in a network, and introduce a method that uses these metrics to extract the sparse part from it, which we tested on a toy network and on data coming from the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002). https://doi.org/10.1103/RevModPhys.74.47

  2. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101. http://linkinghub.elsevier.com/retrieve/pii/S037015731000308X (2011). https://doi.org/10.1016/j.physrep.2010.11.002

  3. Burt, R.: Structural Holes: The Social Structure of Competition. Harvard University Press. https://books.google.fr/books?id=FAhiz9FWDzMC (2009)

  4. Eades, P., Foulds, L., Giffin, J.: An efficient heuristic for identifying a maximum weight planar subgraph. In: Billington, E.J., Oates-Williams, S., Street, A.P. (eds.) Combinatorial Mathematics IX: Proceedings of the Ninth Australian Conference on Combinatorial Mathematics Held at the University of Queensland, Brisbane, Australia, August 24–28, 1981, pp. 239–251. Springer, Berlin Heidelberg (1982). https://doi.org/10.1007/BFb0061982

  5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174. http://linkinghub.elsevier.com/retrieve/pii/S0370157309002841 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

  6. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991). https://doi.org/10.1002/spe.4380211102

  7. Le Couédic, M., Leturcq, S., Rodier, X., Hautefeuille, F., Fieux, E., Jouve, B.: Du cadastre ancien au graphe. Les dynamiques spatiales dans les sources fiscales médiévales et modernes. ArchéoSciences 36, 71–84. http://archeosciences.revues.org/3758 (2012). https://doi.org/10.4000/archeosciences.3758

  8. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst. 539–547. http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks (2012)

  9. Martin, S., Brown, W.M., Klavans, R., Boyack, K.W.: OpenOrd: an open-source toolbox for large graph layout, p. 786806 (2011). https://doi.org/10.1117/12.871402

  10. Miele, V., Matias, C.: Revealing the hidden structure of dynamic ecological networks. R. Soc. Open Sci. 4(6), 170251 (2017). https://doi.org/10.1098/rsos.170251

  11. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582. http://www.pnas.org/content/103/23/8577.short (2006)

  12. Qiao, J., Huang, H.Q., Li, G.Y., Fan, Y.: Bridging the gap between different social networks. Phys. A Stat. Mech. Appl. 410, 535–549. http://linkinghub.elsevier.com/retrieve/pii/S0378437114004488 (2014). https://doi.org/10.1016/j.physa.2014.05.067

  13. Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2) (2003). https://doi.org/10.1103/PhysRevE.67.026112

  14. Souma, W., Fujiwara, Y., Aoyama, H.: Complex networks and economics. Phys. A Stat. Mech. Appl. 324(1–2), 396–401. http://linkinghub.elsevier.com/retrieve/pii/S0378437102018587 (2003). https://doi.org/10.1016/S0378-4371(02)01858-7

  15. Vuillon, L., Lesieur, C.: From local to global changes in proteins: a network view. Curr. Opin. Struct. Biol. 31, 1–8. http://linkinghub.elsevier.com/retrieve/pii/S0959440X1500024X (2015). https://doi.org/10.1016/j.sbi.2015.02.015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Djellabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Djellabi, M., Jouve, B., Amblard, F. (2018). Behind the Communities, a Focus on the Sparse Part of a Network. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics