Nothing Special   »   [go: up one dir, main page]

Skip to main content

A General Lower Bound for Collaborative Tree Exploration

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10641))

Abstract

We consider collaborative graph exploration with a set of k agents. All agents start at a common vertex of an initially unknown graph with n vertices and need to collectively visit all other vertices. We assume agents are deterministic, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (\(k \le \sqrt{n}\)) and large (\(k \ge n\)) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains.

First, we significantly extend a lower bound of \(\varOmega (\log k / \log \log k)\) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range \(k \le n \log ^c n\) for any \(c \in \mathbb {N}\). Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with \(k=Dn^{1+o(1)}\) agents has a competitive ratio of \(\omega (1)\), while Dereniowski et al. gave an algorithm with \(k=Dn^{1+\varepsilon }\) agents and competitive ratio \(\mathcal {O}(1)\), for any \(\varepsilon > 0\) and with D denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using \(k=n\) agents, there exist trees of arbitrarily large height D that require \(\varOmega (D^2)\) rounds, and we provide a simple algorithm that matches this bound for all trees.

Y. Disser—Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School CE at TU Darmstadt.

F. Mousset—Supported by grant no. 6910960 of the Fonds National de la Recherche, Luxembourg.

A. Noever—Supported by grant no. 200021 143338 of the Swiss National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (FOCS), pp. 218–223 (1979)

    Google Scholar 

  3. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. Comb. Probab. Comput. 20(4), 481–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambühl, C., Gąsieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), 1–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science (FOCS), pp. 75–85 (1994)

    Google Scholar 

  8. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: Proceedings of the 19th Annual Symposium on Foundations of Computer Science (FOCS), pp. 132–142 (1978)

    Google Scholar 

  9. Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple polygons: how robots benefit from looking back. Algorithmica 65(1), 43–59 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple polygons. ACM Trans. Algorithms 11(4), 1–16 (2015)

    Article  MATH  Google Scholar 

  11. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Disser, Y., Hackfeld, J., Klimm, M.: Undirected graph exploration with \(\varTheta (\log \log n)\) pebbles. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 25–39 (2016)

    Google Scholar 

  15. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2, 380–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_5

    Chapter  Google Scholar 

  17. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.I.: Online graph exploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28(2), 480–495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoffmann, F.: One pebble does not suffice to search plane labyrinths. In: Proceedings of the 3rd International Symposium on Fundamentals of Computation Theory (FCT), pp. 433–444 (1981)

    Google Scholar 

  22. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 27–36 (2012)

    Google Scholar 

  23. Ortolf, C., Schindelhauer, C.: A recursive approach to multi-robot exploration of trees. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 343–354. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_26

    Google Scholar 

  24. Ortolf, C., Schindelhauer, C.: Strategies for parallel unaware cleaners. Theor. Comput. Sci. 608, 178–189 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Rajko Nenadov for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Disser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Disser, Y., Mousset, F., Noever, A., Škorić, N., Steger, A. (2017). A General Lower Bound for Collaborative Tree Exploration. In: Das, S., Tixeuil, S. (eds) Structural Information and Communication Complexity. SIROCCO 2017. Lecture Notes in Computer Science(), vol 10641. Springer, Cham. https://doi.org/10.1007/978-3-319-72050-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72050-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72049-4

  • Online ISBN: 978-3-319-72050-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics