Nothing Special   »   [go: up one dir, main page]

Skip to main content

Co-clustering for Differentially Private Synthetic Data Generation

  • Conference paper
  • First Online:
Personal Analytics and Privacy. An Individual and Collective Perspective (PAP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10708))

Included in the following conference series:

  • 736 Accesses

Abstract

We propose a methodology to anonymize microdata (i.e. a table of n individuals described by d attributes). The goal is to be able to release an anonymized data table built from the original data while meeting the differential privacy requirements. The proposed solution combines co-clustering with synthetic data generation to produce anonymized data. First, a data independent partitioning on the domains is used to generate a perturbed multidimensional histogram; a multidimensional co-clustering is then performed on the noisy histogram resulting in a partitioning scheme. This differentially private co-clustering phase aims to form attribute values clusters and thus, limits the impact of the noise addition in the second phase. Finally, the obtained scheme is used to partition the original data in a differentially private fashion. Synthetic individuals can then be drawn from the partitions. We show through experiments that our solution outperforms existing approaches and we demonstrate that the produced synthetic data preserve sufficient information and can be used for several datamining tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/.

References

  1. https://sourceforge.net/projects/privbayes

  2. Acs, G., Castelluccia, C., Chen, R.: Differentially private histogram publishing through lossy compression. In: 2012 IEEE 12th International Conference on Data Mining, pp. 1–10. IEEE (2012)

    Google Scholar 

  3. Blondel, V.D., Esch, M., Chan, C., Clérot, F., Deville, P., Huens, E., Morlot, F., Smoreda, Z., Ziemlicki, C.: Data for development: the D4D challenge on mobile phone data (2012). arXiv preprint arXiv:1210.0137

  4. Boullé, M.: Data grid models for preparation and modeling in supervised learning. In: Hands-On Pattern Recognition: Challenges in Machine Learning, vol. 1, pp. 99–130 (2010)

    Google Scholar 

  5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  6. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  Google Scholar 

  7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  8. Hartigan, J.A.: Direct clustering of a data matrix. J. Am. Stat. Assoc. 67(337), 123–129 (1972)

    Article  Google Scholar 

  9. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp. 19–30. ACM (2009)

    Google Scholar 

  10. Mohammed, N., Chen, R., Fung, B., Yu, P.S.: Differentially private data release for data mining. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–501. ACM (2011)

    Google Scholar 

  11. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC 2007, pp. 75–84. ACM, New York (2007). https://doi.org/10.1145/1250790.1250803

  12. Robert, C.: The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer, New York (2007)

    MATH  Google Scholar 

  13. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiao, Y., Xiong, L., Fan, L., Goryczka, S.: Dpcube: differentially private histogram release through multidimensional partitioning (2012). arXiv preprint arXiv:1202.5358

  15. Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially private histogram publication. VLDB J. 22(6), 797–822 (2013)

    Article  Google Scholar 

  16. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: Private data release via bayesian networks. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 1423–1434. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Benkhelif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benkhelif, T., Fessant, F., Clérot, F., Raschia, G. (2017). Co-clustering for Differentially Private Synthetic Data Generation. In: Guidotti, R., Monreale, A., Pedreschi, D., Abiteboul, S. (eds) Personal Analytics and Privacy. An Individual and Collective Perspective. PAP 2017. Lecture Notes in Computer Science(), vol 10708. Springer, Cham. https://doi.org/10.1007/978-3-319-71970-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71970-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71969-6

  • Online ISBN: 978-3-319-71970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics