Nothing Special   »   [go: up one dir, main page]

Skip to main content

Homometry in the Dihedral Groups: Lifting Sets from \( \mathbb {Z}_{n}\) to \( D_{n}\)

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10527))

Included in the following conference series:

Abstract

The paper deals with the question of homometry in the dihedral groups \(D_{n}\) of order 2n. These groups are non-commutative, leading to new and challenging definitions of homometry, as compared to the well-known case of homometry in the commutative group \( \mathbb {Z}_{n}\). We give here a musical interpretation of homometry in \(D_{12}\) using the well-known neo-Riemannian groups, some results on a complete enumeration of homometric sets for small values of n, and some properties disclosing the deep links between homometry in \(\mathbb {Z}_{n}\) and homometry in \(D_{n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lachaussée, G.: Théorie des ensembles homométriques. Master’s thesis, Ecole Polytechnique (2010). http://recherche.ircam.fr/equipes/repmus/moreno/MasterLachaussee.pdf

  2. Amiot, E.: David Lewin and maximally even sets. J. Math. Music 1(3), 157–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mandereau, J., Ghisi, D., Amiot, E., Andreatta, M., Agon, C.: Z-relation and homometry in musical distributions. J. Math. Music 5(2), 83–98 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mandereau, J., Ghisi, D., Amiot, E., Andreatta, M., Agon, C.: Discrete phase retrieval in musical structures. J. Math. Music 5(2), 99–116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lewin, D.: General Musical Intervals and Transformations. Yale University Press, New Haven (1987)

    Google Scholar 

  6. Forte, A.: The Structure of Atonal Music. Yale University Press, New Haven (1977)

    Google Scholar 

  7. Jedrzejewski, F., Johnson, T.: The structure of Z-related sets. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 128–137. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_10

    Chapter  Google Scholar 

  8. Crans, A., Fiore, T., Satyendra, R.: Musical actions of dihedral groups. Am. Math. Mon. 116(6), 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Popoff, A.: Building generalized neo-Riemannian groups of musical transformations as extensions. J. Math. Music 7(1), 55–72 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lewin, D.: Making and using a Pcset network for Stockhausen’s Klavierstück III. In: Musical Form and Transformation: Four Analytic Essays, pp. 16–67. Yale University Press (1993)

    Google Scholar 

  11. Rosenblatt, J.: Phase retrieval. Commun. Math. Phys. 95, 317–343 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goyette, J.S.: The Z-relation in theory and practice. Ph.D. Thesis, University of Rochester (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Grégoire Genuys or Alexandre Popoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Genuys, G., Popoff, A. (2017). Homometry in the Dihedral Groups: Lifting Sets from \( \mathbb {Z}_{n}\) to \( D_{n}\) . In: Agustín-Aquino, O., Lluis-Puebla, E., Montiel, M. (eds) Mathematics and Computation in Music. MCM 2017. Lecture Notes in Computer Science(), vol 10527. Springer, Cham. https://doi.org/10.1007/978-3-319-71827-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71827-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71826-2

  • Online ISBN: 978-3-319-71827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics