Abstract
The paper deals with the question of homometry in the dihedral groups \(D_{n}\) of order 2n. These groups are non-commutative, leading to new and challenging definitions of homometry, as compared to the well-known case of homometry in the commutative group \( \mathbb {Z}_{n}\). We give here a musical interpretation of homometry in \(D_{12}\) using the well-known neo-Riemannian groups, some results on a complete enumeration of homometric sets for small values of n, and some properties disclosing the deep links between homometry in \(\mathbb {Z}_{n}\) and homometry in \(D_{n}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lachaussée, G.: Théorie des ensembles homométriques. Master’s thesis, Ecole Polytechnique (2010). http://recherche.ircam.fr/equipes/repmus/moreno/MasterLachaussee.pdf
Amiot, E.: David Lewin and maximally even sets. J. Math. Music 1(3), 157–172 (2007)
Mandereau, J., Ghisi, D., Amiot, E., Andreatta, M., Agon, C.: Z-relation and homometry in musical distributions. J. Math. Music 5(2), 83–98 (2011)
Mandereau, J., Ghisi, D., Amiot, E., Andreatta, M., Agon, C.: Discrete phase retrieval in musical structures. J. Math. Music 5(2), 99–116 (2011)
Lewin, D.: General Musical Intervals and Transformations. Yale University Press, New Haven (1987)
Forte, A.: The Structure of Atonal Music. Yale University Press, New Haven (1977)
Jedrzejewski, F., Johnson, T.: The structure of Z-related sets. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 128–137. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_10
Crans, A., Fiore, T., Satyendra, R.: Musical actions of dihedral groups. Am. Math. Mon. 116(6), 479–495 (2009)
Popoff, A.: Building generalized neo-Riemannian groups of musical transformations as extensions. J. Math. Music 7(1), 55–72 (2013)
Lewin, D.: Making and using a Pcset network for Stockhausen’s Klavierstück III. In: Musical Form and Transformation: Four Analytic Essays, pp. 16–67. Yale University Press (1993)
Rosenblatt, J.: Phase retrieval. Commun. Math. Phys. 95, 317–343 (1984)
Goyette, J.S.: The Z-relation in theory and practice. Ph.D. Thesis, University of Rochester (2012)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Genuys, G., Popoff, A. (2017). Homometry in the Dihedral Groups: Lifting Sets from \( \mathbb {Z}_{n}\) to \( D_{n}\) . In: Agustín-Aquino, O., Lluis-Puebla, E., Montiel, M. (eds) Mathematics and Computation in Music. MCM 2017. Lecture Notes in Computer Science(), vol 10527. Springer, Cham. https://doi.org/10.1007/978-3-319-71827-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-71827-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71826-2
Online ISBN: 978-3-319-71827-9
eBook Packages: Computer ScienceComputer Science (R0)