Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Time Warping for Automatic Musical Form Identification in Symbolical Music Files

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10527))

Included in the following conference series:

Abstract

Music information retrieval techniques are used to automatically extract structural data of a piece, however there have been few attempts to study ways to automatically identify the musical form of digital files. In this work we present an implementation of the dynamic time warping algorithm for the automatic identification of musical form structure by means of a segmentation matrix in which we group elements according to maximal similarity. The system was implemented in symbolic files parsed with the music21 library. We tested it in two pieces: Bagatelle No. 25 in A minor by L.V. Beethoven, and Piano Sonata No. 11 in A major, K331, movement 3 by W.A. Mozart. The system obtained a correct identification of the similar sections, both with a rondo form. We foresee that this algorithm can be extended to measure harmonic similarity and with this be able to analyze more complex forms, like a sonata.

C. Bañuelos—This work was made possible by the doctoral financial support of the Consejo Nacional de Ciencia y Tecnología (CONACYT), México. Grant number: CVU 662627 no: 583329.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper, M.L., Foote, J.: Automatic music summarization via similarity analysis. In: ISMIR 2002 (2002)

    Google Scholar 

  2. Cuthbert, M.S., Ariza, C.: music21: a toolkit for computer-aided musicology and symbolic music data. In: ISMIR 2010, pp. 637–642 (2010)

    Google Scholar 

  3. Cuthbert, M.S., Ariza, C., Friedland, L.: Feature extraction and machine learning on symbolic music using the music21 toolkit. In: ISMIR 2011, pp. 387–392 (2011)

    Google Scholar 

  4. Dubnov, S., Assayag, G., Lartillot, O., Bejerano, G.: Using machine-learning methods for musical style modeling. IEEE Comput. 36(10), 73–80 (2003)

    Article  Google Scholar 

  5. Droettboom, M., Fujinaga, I., MacMillan, K., Patton, M., Warner, J., Sayeed Choudhury, G., DiLauro, T.: Expressive and efficient retrieval of symbolic musical data. In: ISMIR 2001 (2001)

    Google Scholar 

  6. Hu, N., Dannenberg, R.B., Tzanetakis, G.: Polyphonic audio matching and alignment for music retrieval. In: 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 185–188. IEEE (2003)

    Google Scholar 

  7. Kaminskas, M., Ricci, F.: Contextual music information retrieval and recommendation: state of the art and challenges. Comput. Sci. Rev. 6(2), 89–119 (2012)

    Article  Google Scholar 

  8. Lamere, P.: The Infinite Jukebox (2012). www.infinitejuke.com. Accessed 24 May 2016

  9. Lee, K., Slaney, M.: Automatic chord recognition from audio using a HMM with supervised learning. In: ISMIR 2006, pp. 133–137 (2006)

    Google Scholar 

  10. McVicar, M., Santos-Rodríguez, R., Ni, Y., De Bie, T.: Automatic chord estimation from audio: a review of the state of the art. IEEE/ACM Trans. Audio Speech Lang. Process. 22(2), 556–575 (2014)

    Article  Google Scholar 

  11. Müller, M.: Dynamic time warping. In: Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007)

    Google Scholar 

  12. Pardo, B., Birmingham, W.P.: Algorithms for chordal analysis. Comput. Music J. 26(2), 27–49 (2002)

    Article  Google Scholar 

  13. Salvador, S., Chan, P.: FastDTW: toward accurate dynamic time warping in linear time and space. In: 3rd Workshop on Mining Temporal and Sequential Data, ACM KDD 2004, Seattle, Washington, 22–25 August 2004 (2004)

    Google Scholar 

  14. Park, T., Lee, T.: Musical instrument sound classification with deep convolutional neural network using feature fusion approach. arXiv preprint arXiv:1512.07370 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Bañuelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bañuelos, C., Orduña, F. (2017). Dynamic Time Warping for Automatic Musical Form Identification in Symbolical Music Files. In: Agustín-Aquino, O., Lluis-Puebla, E., Montiel, M. (eds) Mathematics and Computation in Music. MCM 2017. Lecture Notes in Computer Science(), vol 10527. Springer, Cham. https://doi.org/10.1007/978-3-319-71827-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71827-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71826-2

  • Online ISBN: 978-3-319-71827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics