Nothing Special   »   [go: up one dir, main page]

Skip to main content

Symbolic Regression by Means of Grammatical Evolution with Estimation Distribution Algorithms as Search Engine

  • Chapter
  • First Online:
Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Abstract

Grammatical Evolution (GE) is a Grammar-based form of Genetic Programming (GP) and it has been used to evolve programs or rules. The GE uses a population of linear genotypic strings and it is transformed by mapping process, those string are evolved using a search engine like the Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), among others. One of the big trouble of these algorithms is the parameter tuning. In this paper is proposed an Estimation Distribution Algorithm (EDA) as search engine using the Symbolic Regression as a benchmark, due to the few parameters used by the EDA. The results were compared against the obtained by DE as search engine using the Friedman nonparametric test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D.A. Augusto, H.J.C. Barbosa, Symbolic regression via genetic programming, in Proceedings of the VI Brazilian Symposium on Neural Networks (SBRN ’00) (IEEE Computer Society, Washington, DC, USA, 2000), p. 173. http://dl.acm.org/citation.cfm?id=827249.827526

  2. S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Tech. rep., Pittsburgh, PA, USA (1994)

    Google Scholar 

  3. P. Barmpalexis, K. Kachrimanis, A. Tsakonas, E. Georgarakis, Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation. Chemom. Intell. Lab. Syst. 107(1), 75–82 (2011). http://www.sciencedirect.com/science/article/pii/S0169743911000153

  4. J.S. De Bonet, C.L. Isbell, P. Viola, Mimic: finding optima by estimating probability densities, in Advances in Neural Information Processing Systems, vol. 9 (1997)

    Google Scholar 

  5. I. Dempsey, M. O’Neill, A. Brabazon, Foundations in grammatical, in Foundations in Grammatical Evolution for Dynamic Environments, vol. 194 (Springer, New York, 2009)

    Google Scholar 

  6. A. Eiben, S. Smit, Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

    Article  Google Scholar 

  7. A. Espinal, M. Carpio, M. Ornelas, H. Puga, P. Melín, M. Sotelo-Figueroa, Evolutionary Indirect Design of Feed-Forward Spiking Neural Networks, vol. 101 (Springer International Publishing, 2015), p. 89. http://dx.doi.org/10.1007/978-3-319-17747-2\s\do5(7)

  8. M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011). http://www.sciencedirect.com/science/article/pii/S2210650211000435

  9. D. Karaboga, C. Ozturk, N. Karaboga, B. Gorkemli, Artificial bee colony programming for symbolic regression. Inf. Sci. 209, 1–15 (2012). http://www.sciencedirect.com/science/article/pii/S0020025512003295

  10. T.M. Khoshgoftaar, N. Seliya, Y. Liu, Genetic programming-based decision trees for software quality classification, in Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, pp. 374–383 (Nov 2003)

    Google Scholar 

  11. J.R. Koza, R. Poli, Genetic programming, in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ed. by E.K. Burke, G. Kendall (Kluwer, Boston, 2005), pp. 127–164

    Chapter  Google Scholar 

  12. P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms, vol. 2 (Springer, US, 2002)

    MATH  Google Scholar 

  13. A. Moraglio, S. Silva, Geometric differential evolution on the space of genetic programs, in Genetic Programming, vol. 6021, Lecture notes in computer science, ed. by A. Esparcia-Alcázar, A. Ekárt, S. Silva, S. Dignum, A. Uyar (Springer, Berlin, 2010), pp. 171–183

    Chapter  Google Scholar 

  14. H. Mühlenbein, The equation for response to selection and its use for prediction. Evol. Comput. 5(3), 303–346 (1997). https://doi.org/10.1162/evco.1997.5.3.303

    Article  Google Scholar 

  15. M., O’Neill., A, Brabazon, Grammatical differential evolution, in International Conference on Artificial Intelligence (ICAI ’06) (CSEA Press, Las Vegas, Nevada, 2006)

    Google Scholar 

  16. M. Pelikan, H. Muehlenbein, The Bivariate Marginal Distribution Algorithm (Springer, London, 1999), pp. 521–535. http://dx.doi.org/10.1007/978-1-4471-0819-1\s\do5(3)9

  17. R. Riolo, T. Soule, B. Worzel (eds.), Genetic Programming Theory and Practice IV, No. 1 (Springer, US, 2007)

    Google Scholar 

  18. C. Ryan, J.J. Collins, M. O’Neill: Grammatical evolution: evolving programs for an arbitrary language, in Proceedings of the First European Workshop on Genetic Programming. Lecture notes in computer science, vol. 1391 (Springer, Berlin, 1998), pp. 83–95

    Google Scholar 

  19. M. Sotelo-Figueroa, H. Puga Soberanes, J. Martin Carpio, H. Fraire Huacuja, L. Cruz Reyes, J. Soria-Alcaraz, Evolving and reusing bin packing heuristic through grammatical differential evolution, in 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 92–98 (2013)

    Google Scholar 

  20. Sotelo-Figueroa, M.A., Puga Soberanes, H.J., Carpio, J.M., Fraire Huacuja, H.J., Cruz Reyes, L., Soria-Alcaraz, J.A.: Improving the bin packing heuristic through grammatical evolution based on swarm intelligence. Mathematical Problems in Engineering 2014 (2014)

    Google Scholar 

  21. J. Togelius, R.D. Nardi, A. Moraglio, Geometric pso + gp = particle swarm programming, in IEEE Congress on Evolutionary Computation, pp. 3594–3600 (2008)

    Google Scholar 

  22. P. Widera, J.M. Garibaldi, N. Krasnogor, Gp challenge: evolving energy function for protein structure prediction. Genet. Program Evolvable Mach. 11(1), 61–88 (2010). https://doi.org/10.1007/s10710-009-9087-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank to Universidad de Guanajuato (UG) for the support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sotelo-Figueroa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sotelo-Figueroa, M.A., Hernández-Aguirre, A., Espinal, A., Soria-Alcaraz, J.A., Ortiz-López, J. (2018). Symbolic Regression by Means of Grammatical Evolution with Estimation Distribution Algorithms as Search Engine. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71008-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71007-5

  • Online ISBN: 978-3-319-71008-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics