Abstract
Grammatical Evolution (GE) is a Grammar-based form of Genetic Programming (GP) and it has been used to evolve programs or rules. The GE uses a population of linear genotypic strings and it is transformed by mapping process, those string are evolved using a search engine like the Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), among others. One of the big trouble of these algorithms is the parameter tuning. In this paper is proposed an Estimation Distribution Algorithm (EDA) as search engine using the Symbolic Regression as a benchmark, due to the few parameters used by the EDA. The results were compared against the obtained by DE as search engine using the Friedman nonparametric test.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
D.A. Augusto, H.J.C. Barbosa, Symbolic regression via genetic programming, in Proceedings of the VI Brazilian Symposium on Neural Networks (SBRN ’00) (IEEE Computer Society, Washington, DC, USA, 2000), p. 173. http://dl.acm.org/citation.cfm?id=827249.827526
S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Tech. rep., Pittsburgh, PA, USA (1994)
P. Barmpalexis, K. Kachrimanis, A. Tsakonas, E. Georgarakis, Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation. Chemom. Intell. Lab. Syst. 107(1), 75–82 (2011). http://www.sciencedirect.com/science/article/pii/S0169743911000153
J.S. De Bonet, C.L. Isbell, P. Viola, Mimic: finding optima by estimating probability densities, in Advances in Neural Information Processing Systems, vol. 9 (1997)
I. Dempsey, M. O’Neill, A. Brabazon, Foundations in grammatical, in Foundations in Grammatical Evolution for Dynamic Environments, vol. 194 (Springer, New York, 2009)
A. Eiben, S. Smit, Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)
A. Espinal, M. Carpio, M. Ornelas, H. Puga, P. Melín, M. Sotelo-Figueroa, Evolutionary Indirect Design of Feed-Forward Spiking Neural Networks, vol. 101 (Springer International Publishing, 2015), p. 89. http://dx.doi.org/10.1007/978-3-319-17747-2\s\do5(7)
M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011). http://www.sciencedirect.com/science/article/pii/S2210650211000435
D. Karaboga, C. Ozturk, N. Karaboga, B. Gorkemli, Artificial bee colony programming for symbolic regression. Inf. Sci. 209, 1–15 (2012). http://www.sciencedirect.com/science/article/pii/S0020025512003295
T.M. Khoshgoftaar, N. Seliya, Y. Liu, Genetic programming-based decision trees for software quality classification, in Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, pp. 374–383 (Nov 2003)
J.R. Koza, R. Poli, Genetic programming, in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ed. by E.K. Burke, G. Kendall (Kluwer, Boston, 2005), pp. 127–164
P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms, vol. 2 (Springer, US, 2002)
A. Moraglio, S. Silva, Geometric differential evolution on the space of genetic programs, in Genetic Programming, vol. 6021, Lecture notes in computer science, ed. by A. Esparcia-Alcázar, A. Ekárt, S. Silva, S. Dignum, A. Uyar (Springer, Berlin, 2010), pp. 171–183
H. Mühlenbein, The equation for response to selection and its use for prediction. Evol. Comput. 5(3), 303–346 (1997). https://doi.org/10.1162/evco.1997.5.3.303
M., O’Neill., A, Brabazon, Grammatical differential evolution, in International Conference on Artificial Intelligence (ICAI ’06) (CSEA Press, Las Vegas, Nevada, 2006)
M. Pelikan, H. Muehlenbein, The Bivariate Marginal Distribution Algorithm (Springer, London, 1999), pp. 521–535. http://dx.doi.org/10.1007/978-1-4471-0819-1\s\do5(3)9
R. Riolo, T. Soule, B. Worzel (eds.), Genetic Programming Theory and Practice IV, No. 1 (Springer, US, 2007)
C. Ryan, J.J. Collins, M. O’Neill: Grammatical evolution: evolving programs for an arbitrary language, in Proceedings of the First European Workshop on Genetic Programming. Lecture notes in computer science, vol. 1391 (Springer, Berlin, 1998), pp. 83–95
M. Sotelo-Figueroa, H. Puga Soberanes, J. Martin Carpio, H. Fraire Huacuja, L. Cruz Reyes, J. Soria-Alcaraz, Evolving and reusing bin packing heuristic through grammatical differential evolution, in 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 92–98 (2013)
Sotelo-Figueroa, M.A., Puga Soberanes, H.J., Carpio, J.M., Fraire Huacuja, H.J., Cruz Reyes, L., Soria-Alcaraz, J.A.: Improving the bin packing heuristic through grammatical evolution based on swarm intelligence. Mathematical Problems in Engineering 2014 (2014)
J. Togelius, R.D. Nardi, A. Moraglio, Geometric pso + gp = particle swarm programming, in IEEE Congress on Evolutionary Computation, pp. 3594–3600 (2008)
P. Widera, J.M. Garibaldi, N. Krasnogor, Gp challenge: evolving energy function for protein structure prediction. Genet. Program Evolvable Mach. 11(1), 61–88 (2010). https://doi.org/10.1007/s10710-009-9087-0
Acknowledgements
The authors want to thank to Universidad de Guanajuato (UG) for the support to this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Sotelo-Figueroa, M.A., Hernández-Aguirre, A., Espinal, A., Soria-Alcaraz, J.A., Ortiz-López, J. (2018). Symbolic Regression by Means of Grammatical Evolution with Estimation Distribution Algorithms as Search Engine. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-71008-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71007-5
Online ISBN: 978-3-319-71008-2
eBook Packages: EngineeringEngineering (R0)